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Beam pipes of high-energy superconducting colliders require a shieldindlinég with pumping slots to
screen cold chamber walls from synchrotron radiation. Pumping slots in the liner walls are required to keep
high vacuum inside the beam pipe and provide for a long beam lifetime. As previously disfiaedetbv and
Gluckstern, Phys. Rev. B4, 1930(1996], for a long narrow slot whose length may be comparable with the
wavelength, the usual static approximation for the polarizability and susceptibility that enter into the imped-
ance is a poor one. Therefore, finding semianalytic expressions for the impedance of a rectangular slot in a
broad frequency range is highly desirable. We develop a general analysis based on a variational formulation,
which includes both the realistic coaxial structure of the beam-pipe and the effect of finite wavelength, in order
to calculate the coupling impedance of a rectangular slot in a liner wall of zero thickness. We then present a
numerical study of the frequency dependence of the coupling impedance of a transverse rectangular slot.
Numerical results for a small square hole are presented for frequencies above and below cutoff, and compared
with the results of other calculationsS1063-651X97)07109-3

PACS numbegps): 29.27.Bd, 41.20-q

[. INTRODUCTION Since the driving current on axis is proportional to
exp(—jkz), the problem is simplified by obtaining results for
The pumping slots in the liner are the chamber disconti-an even driving current cdg and an odd driving current
nuities, and electromagnetic fields diffracted by them can—] sinkzseparately. This separation is needed to construct a
affect beam stability. This beam-chamber interaction can b#ariational form for the impedance.
described in terms of the coupling impedance. The conven-
tional treatment of the coupling impedance using the static
approximation is not sufficient, since for long narrow slots
the effect of finite wavelength becomes importgtt As a The field matching is performed at the radius of the inner
first step in obtaining results for a rectangular slot of arbi-conductor(liner) in the opening. We call the region inside
trary dimensions, in Sec. Il we consider a liner with a sym-the inner conductor<a the “pipe region” and the region
metric annular slot in an inner conductor of negligible thick- 0utside the inner conducta=r=b the “coaxial region.”
ness(Fig. 1). This analysis serves to illuminate the physics 1N€ téchnique consists of expanding fields in both regions

of the problem and to provide a method to obtain accurati"'to a complete set of functions. At the common interface the
numerical results. For low frequencies, the numerical resultd€!ds have to be matched, yielding equations for the expan-

are checked against analytical results, with which they agre ion coefficients. The resulting integrals contain ratios of the
In Sec. Il we treat the same coaxial waveguide as earlier,

A. Field matching method

essel function and its derivative, which are then expanded

but this time consider the azimuthally asymmetric problem!’nto_algebraic series of Bessel function Zeros, and the result-
; ) : . ing integrals are evaluated by means of residue calculus. The

of a single rectangular slot in the inner conductbner),

whose thickness is again negligitileig. 4). We note that our

analysis can be easily extended to any number of slots.

We consider a point chardg, traveling along the axis at
ultrarelativistic speed. We then calculate the coupling imped-
ance, which turns out to be closely related to the Fourier
transform of the wake function, as a function of frequency.
The solution is based on the method of field matching at the
liner radius, including the discontinuity. We construct a
variational form for the impedance, which is stationary with
respect to arbitrary small variations of the field about its true
value. With such an expression it is possible, by judiciously
choosing a trial field, to obtain very accurate results. The
variational approach ensures very good accuracy for the im-
pedance, since the error will be proportional to the square of
the error in the chosen trial fields. A concomitant advantage
is that the variational technique allows us to obtain accurate
numerical results with matrices of modest size. FIG. 1. Schematic diagram of an annular cut in a thin liner.
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solution is then obtained by finally truncating and inverting Z,(k) 1
the resulting matrix equations. Z =

= — . jkz
FmaZlo J dSE(a,8,z;k)e!*4, (1.9
B. The longitudinal coupling impedance
here the surface integral is only over the hole, sifge
anishes on the liner wall. In Sec. Il, where we consider the
azimuthally symmetric problem, the above expression be-

The source fields in the frequency domain generated b
the driving current

JA%,Y,Z:K)=18(x) 8(y)e 1 (1.1)  comes
are the following:
Z a1 f dzE,(a,z;k)elk? (1.10
EQ(r,zk)=ZHP(r,z;k) = =—e 1, (1.2 Zo Zolo s
2
ES(r,z;k)=0, (1.3y Since the driving current on axis is proportional to

exp(—jkz), the problem is simplified by obtaining,(k) for
where Z,=120m (units ), k=w/c. The definition of the an even driving current ckg and an odd driving current
frequency dependent longitudinal coupling impedance of any-j sinkz separately and then taking their sum. We should
obstacle can be taken to be note that the variational method becomes possible only when
the problem is separated into an even and an odd part. In the
even problenk,, H,, H, are even inz, while in the odd
problemE,, H,, H, are odd inz (wherez=0 is chosen to
be the center of the holeln any casé&,, E, , H, are always
whereE,(r, 6,z;k) is the axial electric field in the frequency even iné, andH,, H,, E, are always odd ird. We use the
domain, with frequency dependence gxgf, wherew=kc. ~ superscript ¢) for the even problem and the superscrip} (
The field componenE,(r,6,z;k) can be written in the pipe for the odd problem.
region as

Zy(k)= _l—ol ﬁ;dzékZEz(O,e,z;k), (1.4)

g Jo(kT) II. LONGITUDINAL COUPLING IMPEDANCE OF AN
Ez(r,ﬂ,z,k)=; ~_dge A3 ANNULAR CUT IN A COAXIAL LINER

(1.9

which is the general solution of the wave equation that is
regular atr =0. Herex, defined byx?=k?—q?, is the radial

propagation constant, aral is the radius of the liner. The A schematic diagram of our geometry is shown in Fig. 1.
contour goes below any poles on the negative geatis and  In the pipe region the fields are given by the source fields
above any poles on the positive reghxis in order to satisfy plus a general solution of the Maxwell equations for the cy-
the outgoing wave boundary condition for the fields generdindrical waveguide. In the coaxial region we have the gen-

A. General analysis

1. Even part

ated by the obstacle. eral solution of the Maxwell equations for the coaxial wave-
If we setr =0, only then=0 term survives, and Eq1.4) guide. Due to the symmetry of the problem we haveéo
becomes dependence, and therefore need to consider only the azi-

muthally symmetric TM modes, for which

zu(k):—ifw d9A(@ foc doeizo— 2T p i,
lo J o Jo(ka) J lo e o (e | Jo(KT) Fo(xr)
. Ez (I‘,Z)—f dQ(COSZIZ)A (q) JO(Ka) ) FO(Ka) '
where we used @D

fﬁ ‘dzesz(qfk):27'r5(q— k). (1.7 Here we use the notation where the first part in square brack-
ets corresponds to the pipe regioga, and the second part
For an obstacle configuration which does not extend into th&0Tresponds to the coaxial regiassr<b, with the function
pipe (r<a), one can perform a Fourier inversion of Eq. Fo being the solution of the Maxwell equations for the co-

(1.5) in z and @ for r=a to obtain axial region for the TM modeq Fq(u)=Yy(u)Jo(xb)
—Jo(u)Yo(xb)]. Note that we consider the inside and out-

1 (2= o o side surfaces of the liner both to berat a, since we neglect
An(Q) =72 fo def deéqz“nﬁEz(a,ﬁ,Z;k)- the thickness of the liner compared to the slot width. There-
(1.8 fore, the coefficientA(®(q) is the same for botl<a and
' r>a, sinceE!? is continuous at =a within the hole and on
Therefore, the longitudinal coupling impedance in Ef6)  both sides of the liner surface, wheE&®=0. The corre-
can be written as sponding azimuthal magnetic field is given by
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© _ © with
ZoH(P(r,2)= — jk | da(cosiA®(q) |

Jo(kr)  Fg(kr)
rkJo(ka) ' kFo(ka)

We now treatP(q) as a function ofka with kb= (b/a)«xa

and express this function as a sum over the zeros of the
(2.2  respective denominators. The final result for these expan-
sions is the following:

2

Zol
j{ 0 :(coskz),o

For the coefficientA(®(q) we obtain the even part of Eq.

(1.8), namely, - 1 1 1
. P(Q)—_Zgl qzaz—bg_(ln(b/a) q?a?— KZa?
A<e)(q)=ﬁ f dz(coxi2)E¥(a,2). 2.3 .
2> o, 2.9
The next step is to match the tangential magnetic field s=1 g"a"—Cs
components within the hole. The continuity b in the
hole gives

qla=Kk%a?— x%a?, b§= K2a2— pg,
Zolo coskz=jka2f dz’E(?)(a,z’)J dq(cosy2)
’ Jo(p9) =0, (2.10

x(coxiz')P(q), 2.4 c2=K%a2- 02, Fo(os)=0, (2.1

where and ag is given by the following expression:

Jo(ka) Fo(ka) 2
P(q)= - . (2.5 _ Jo(osb/a)
kaJp(ka) kaFg(ka) ag JS(Usb/a)—JS(Us)’ s=1. (2.12
We can rewrite Eq(2.4) in the following form, Here Fo(o) is given by
f dZ'E'¥(a,2))K{(2,2')=Z,lo(cokz),  (2.6) Fo(0)=Yo(a)do(obla)=Jg(a)Ye(obla), (2.13
in contrast to our earlier definition ¢f,(u) needed to define
where F4(u). The resulting expression fat{?, in Eq. (2.7), can
K(ﬁ)(Z,Z'):K(ﬁ)(Z'ﬁz) then be integrated over by means of the residue theorem.
If we now multiply Eq.(2.6) by E{?(a,z) and integrate
B , both sides over, then divide by[ fdzE®(a,z)(cosk?)]?,
~a [ dacomaconz ok, @7 Doh S
Zolo ' EO) () €y o e ’
2B a.2)(cokz) dz'dzES(a,z’)E¥(a,2)K$(2,2") dzE®(a,z)(cokz)| . (2.14
|
Using the definition of the impedance for the even part, we v
can rewrite Eq(2.14 above as E®(a,z)=, aVCOSEZ, (2.19

’ e) ’ e e ’
ﬁ:_ L//dz dZF(T (a.2)E (2. 2K (2.2)] with v being even so thatE,/9z=0 atz==*g/2. In Eq.
z}® [JdzE(a,2)(cok2)]? ' (2.16), g is the width of the slot in the longitudinal direction
(219 2
After evaluation of the integrals in EqR.15), the solution

o ) o ) for the even part of the impedance is obtained by finally
which is easily seen to be a variational form for the imped-yyncating and inverting the resulting matrix equations.
ance, with trial functiore{?(a,z).

To proceed from the variational statement of the problem
to the solution, we expand the unknown fi&d®(a,z) in
terms of a complete set of characteristic functions of the We now consider the portion of the problem whﬁg‘?) is
hole. For the case of the even problem, we choose odd inz, using the same notation as for the even part.

2. Odd part
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Jo(kr) Fo(kr)
Jo(Ka) ' Fo(Ka)

. —jzo|0(sinkz)=jka2f dz' E;‘?)(a,z')f dq(singz)
(2.17

£, = | da(sim2AC @)
X(sinqz')P(q). (220

ZoHY (r,2)=~ kf dg(sing2)A”(q) We can rewrite Eq(2.20 in the following form

Jo(kr)  Fo(kr)
kJo(ka) ' kFg(ka)

fdz’E(Z‘?)(a,z’)K(l‘i)(z,z’):—jZOIO(sinkz),

Zolo,
—[] oy (sinkz),0

(2.21)
(2.18
where
For the coefficientA(®’(q) we obtain the odd part of Eq.
(1.8), namely, K(l?(z,zr):K(lci)(zf'z)
A<°>(q)=j%jdz(sir‘qz)E(ZO)(a,z). (2.19 =af dq(singz)(sinz' )k,  (2.22

The next step is to match the tangential magnetic field comwith k;; given by Eq.(2.8). If we now multiply Eq.(2.21) by
ponents within the hole. The continuity &f”) in the hole  E{”(a,z) and integrate both sides over then divide by
gives [fdzE”(a,z)(sink?)]?, we obtain

_jZOIO _ dz'd eo) ’ E(O) K(O) ! d EZO) ink i 2.2
[dzEP(a,z)(sikz) 7 dzE)(a,z')E’(a,2)KY(2,2) 2" (a,z)(sinkz) | . 223

Using the definition of the impedance for the odd part, wewould expect the odd part to be negligible as lond &asv.

can rewrite Eq(2.23 above as Numerical study for slots with azimuthal length larger than
the radius of the curvature of the pipe in Sec. Il showed that
Zo [[fdZ dzEY(a,2")EL(a,2)K(2,2')] the argument discussed above holds even wheam (with a
Zﬁo) == [fdzl;(")(a,z)(sin k2)]2 , being the radius of the inner condudtowhere the small

(2.24 hole approximation already fails.

' In our particular case where the slot is a narrow annular
which is a variational form for the odd part of the imped- Cut, for low frequencies the leading nonvanishing term of the
ance. odd part is a factor ofd/a)? less than the same term in the

To proceed from the variational statement of the problenven part. This can be seen by performing an analysis for the
to the solution, we expand the unknown fieEéO)(a 2) in odd part similar to the analysis given below. To present the
terms of a complete set of characteristic functions of thednalytic result for a narrow annular cut it is therefore suffi-

hole. For the case of odd problem, we choose cient to consider only the even part of the impedance.
’ From Eq.(2.15), the variational form for the even part of

impedance is the following:

i 2
7 =k f dzE<Ze>(a,z)(coskz)) /
with v being odd so thatE,/Jz=0 again az= *g/2. After 0 a
evaluation of the integrals in Eg42.24), the solution for the , &, (e
odd part of the impedance is obtained by finally truncating (f f dz dZF7<’ (a,z')E;"(a,2)
and inverting the resulting matrix equations.

v
—Z

: (2.29

E\%a,z)=2, a, sin
v Zi® |

X

o _ f dQ(COSJZ)(COSJZ')P(Q)D, (2.26
B. Analytic derivation for low frequencies

The even part of the impedance can be related to the L )
magnetic susceptibility of the hole. The odd part of the im-"hereP(a) is given by Eq(2.5. For smallka we write the
pedance can be related to the electric polarizability of théluantities in Eqs(2.10 and(2.11) as
hole. For the transverse narrow slot in the Bethe approxima-
tion for a small hole, the magnetic susceptibility is propor- bi=—pZ, bse=—jps, ci=-02,
tional to |3, wherel is the azimuthal length of the slot, and
the electric polarizability is proportional tav?, wherew is ) 2 oo
the width of the slotfsee, for exampld1,2]). Therefore, one Cs=—jos, cp=kac. (2.27)
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§ @’ i FIG. 2. Real and imaginary
g 0.10 '-"E~ "0.08 parts of the coupling impedance
- g/a=0.1 of an annular cut in a coaxial
-0.08 - liner.
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By integrating oven in the square brackets of E@.26), we _ _ a?
obtain M(Z,Z/): —2’7Ta0+ 2]ka(C1+ C2)+21ka In m
v ~ H ’ -
-2 5al€XP(—\ps/a) + exp —\ps/a)] +jmack(|z+2'|+]z—-2'])|. (2.32
s=1 3

jagm _ - In Eq. (2.3)) the integrals overz andz’ go from —g/2 to
— 7 [exp(—jAKk) +exp(—jAK) ] g/2, with g being the width of the cut in the longitudinal
a
direction. After evaluating the integrals in E@®.31), using

ag the static approximation fdg,, , E,, we obtain

> Za[exp(—ms/a)+exp(—ias/a)], (2.28
=t Os Z, In(bla)[ 4
7 = 1+]j ?kag/a
where « is given by Eq.(2.12 and ay=—1/[2 In(b/a)]. 0
Here we use notation ~In(b/a)
—2jka - [Ci,+Cy+2In(4alg)]|.
N=|z+2'|, \=|z—-Z'|. (2.29 (2.33

In this result we suppressed the superscrigt, (since the
odd part of the impedance is negligible. Numerical study
shows thatC,+ C, can be replaced by Ib{a—1)—1.78 for
the range ob/a from 1 to 3.

For small\, X, z=z' we can replace the sums in H@-29
by integrals. By evaluating the integrals, Eg.28 becomes

1 a? 1 a?
a In AN +2C, |- a In AN +2C, C. Numerical results
) Formulas for numerical computation of the impedance of
) Trao(z—jk|z— 2’|~ iK|z+2']) (2.30 an annular slot in the inner conductor of coaxial structure are
k a2 ' ' obtained. The even part of the impedance is calculated using

Eqg. (2.195 and the odd part is calculated using Eg.24.

where constants of integratiadd; and C, can be found by TABLE I. Im(Z,/Zy) for b/a=2 at frequencyka=0.03, C,=
simple numerical calculation. The resulting expression for-0.667,C,=—1.117.
the impedance becomes

g/a Analytic approximation Numerical result
z® [[dzE®(a,2)]? (2,31 0.01 0.02976 0.02907
Zo ffdz’szé‘f)(a,z’)E(Ze)(a,z)M (z,2') ) 0.03 0.02332 0.02308
0.05 0.02025 0.02022
0.07 0.01823 0.01830

where
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o E parts of the admittance of an an-
60— . 60 nular cut in a coaxial liner.
40
40—
20
T i i T T T T T T T
2.0 2.2 2.4 2.6 2.8 2.0 2.2 2.4 2.6 2.8
ka ka

Finally, one sums together the even and the odd parts tae,[C,+C,+ 2 In(4a/g)], corresponding to the parallel
obtain the coupling impedance. It turns out that for the cas@ombination of the resistand® and the capacitancg. In

of the annular cut, which we consider in Sec. Il, the odd parfFig. 3 we present the real and imaginary parts of the admit-
is negligible. The same is true even for the slot with finitetanceY as a function oka. As one can see, the real part of
azimuthal length as long as the azimuthal length is muchhe admittance is purely BR/until ka=2.405, the cutoff of
larger than the width of the sldsee Sec. ). The general the TMy; mode. At this cutoff the singularity corresponds to
behavior of the real and imaginary parts with respect to frethe fact that power starts to dissipate not just in the coaxial
quency is presented in Fig. 2. region, but also in the pipe region.

D. Discussion IIl. LONGITUDINAL COUPLING IMPEDANCE

The interesting feature of the annular cut is that in the OF A RECTANGULAR SLOT
limit of zero frequency the real part becomes finite, and the
imaginary part becomes capacitive. For low frequencies we A. The even part of impedance

obtain the leading terms for the real and imaginary parts
analytically, according to Eq2.33. The agreement between

the analytic and numerical results is very good. As an ex- A schematic diagram of our geometry with the rectangu-
ample, results fob/a=2 are presented in Table I. For other lar slot is shown in Fig. 4. In the pipe region the fields are
values ofb/a, the analytic and numerical results are also ingiven by the source fields plus a general solution of the Max-
good agreement. well equations for the cylindrical waveguide. In the coaxial

The real part of the impedance in the limit of zero fre-
quency becomes finite, and is equal tobfa}/s, which
agrees with the result obtained by PaluniB Its physical
origin is the energy radiated in the TEM mode in the coaxial
region. With a small hole in the wall, “image” current lines
change their profile very little as they avoid the hole, gener-
ating almost no radiation. When the pipe is truncagthu-
lar cub, the current lines are simply interrupted, leading to
the significant radiation in the coaxial region.

For low frequencies, the coupling impedance of the nar-
row annular cut can be easily presented in terms of an
equivalent circuit. Specifically, fog<a, we can write for
the admittance

1. General analysis

Y=R +jwC, (2.34

where R is given by ZgIn(b/a)/7, and C is given by FIG. 4. Schematic diagram of a rectangular slot in a thin liner.
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region we have a general solution of the Maxwell equations
for the coaxial waveguide. Due to the asymmetry of the

problem we now have dependence, and therefore need to
consider both TM and TE modes. For the TM portion of the
modes we have

E(ze)(r,a,z)=j dq(coxyz) ¢'®(r,6), (3.2
where
n(Kr) Fn(Kr)
e (e)
¢ ®(r,0)= 2 (comd)A¥(q ) 3.(xa)’ Fu(xa)|
(3.2

Here we use the notation where the first part in square brack-

ets corresponds to the pipe regioga, and the second part
corresponds to the coaxial regiarssr<b, with the function

F, being the solution of the Maxwell equations for the co-
axial region for the TM modeq F,(u)=Y,(u)J,(«b)
—J,(u)Y,(xb)]. Note that we consider the inside and out-
side surfaces of the liner both to berata, since we neglect
the thickness of the liner compared to the wavelength and t
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Zolg
+ ﬁ[(coiz),O], (3.5
dg(co ap'®(r,0
onﬁe)(r,e,z):ij Q(Kzrsqz) (’5&(0 ). (3.6)

For the TE portion of the modes we similarly have

ZoHY(r,6,2)= f da(sing2) y®(r,6), (3.7
where
. \]n(Kr) Gn(Kr)
(e) - _ (e)
Po(r,0) Zn (sinn6)B, 3 (xa)' Gl (xa) |
(3.8

with the functionG,(«r) being the solution of the Maxwell

equations for the coaxial region for the TE modes
[Gh(u)=Y,(u)d}(xb)—J,(u)Y (xb)]. The other TE field

gomponents can be obtained as

the dimensions of the rectangular slot. Therefore, the coeffi-

cientA®(q) is the same for both<a andr>a, sinceE®

is continuous at = a within the hole and on both sides of the
liner surface, wher&!®=0. The other corresponding TM
field components can be obtained as

q(singz) 9¢®(r,0)
(e) P
Er (rygvz) J dq K2 or

=] > r[(smkz) 0], (3.3
. q(singz) 9¢(r,0)
Eg>(r,a,z):—f dg— = (B9

dg(cogyz) 9¢'°(r,6)
or

2oHr,0.2)= -k |

K2

ZoH{(r,0,2)= — kX (JdQ(COSIZ)(COSW)Aﬁe

—2 qu%(cosqzxcomﬂ)B?(q)

EP(r,0,2)=

—ikX ( f dq(sirqz)(sinnﬂ)B?(q)L

(qu (singz)(sinn )AL (q)

(e)

0H§e>(r,0,z):f dqq(cgsqz) Iy a(rr,e), 39

e dgg(cogiz) 9¢'°(r,6)

ZOH(B)(r,e,z)zf = YR (3.10
(e)

EC(r,0,2) kf dCI(Slan) Y a(rr 9)’ (3.11
(e)

E'¥(r,0,2)= ka dQ(SmZ) ihd a(ar 0). (3.12

For the general solution, we include both the TM and TE
portions of the modes, and write explicitly

n(kr)  Fi(kr)

) ){ J zO 0
(q kJn(ka)’ kFo(ka)

[(coskz) 0]

Jn(kr) Gp(kr)
Jn(ka)’ Gp(ka)

(3.13

Jn(kr) Fpu(kr)
Jn(ka)' Fy(ka)

Ji(kr)  Gp(kr)
Ji(ka)’ kG| (ka)

(3.19

)
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We can expresa®(q) in terms of theE(®(a, 6,z) by using _ _ _ _
the even part of nEq(.1.8) to obtain K(zz):a; f dq(singz)(singz’)(sinn6)(sinn 6" )ksz,
(3.22
(q)— J dS(cogjz)(comh)EX)(a,0,2).
(3.15 with
Similarly we expres8{®(q) in terms of E{®(a,6,z) and _ - g2n?
E{®(a,0,z) by inverting Eq.(3.14 atr =a. Specifically Ki1=JkaPn(a) =] 7 - Qn(d), (3.23
(e)
an Byi(a) 1 : :
— AP () —jk z—de(squ)(smne) qn
2 2 .
ax® " K 47°a K1o=K21=] TQn(Q)a (3.29
XE®(a,0,2). (3.1
2
- - a
Therefore we find for the coefficie®(®(q) P— K—Qn(q). (3.25

k 1
B(® ='——fds{ singz)(sinn@)E'®(a, 6,z
n (@=] k 47°a (sinaz)( )B4 ) Here the function,(q) and Q,(q) are given by the fol-

lowing expressions

(3.17

gn
~ 5,2 (cosiz)(como) E\®(a,0,2)|.

Jh(xa) Fr(xa)
. . . P.(q)= - , (3.26
The next step is to match the tangential magnetic field n kald,(ka) «aF,(xa)
components within the hole. The continuity l6f® andH?
in the hole atr =a leads to (Ka) G, (xa)
Qn(q)= -————|, (327
Ji(xa) kaG[(ka)

f ds'E;?)(a,e’,z')Kg‘?Jrf dSEY(a,6',2)KE=0

(3-18) wherex?=k2—q>.
We now treatP,(q) andQ,(q) as functions ofka with
j ds E(z?)(a10,1Z,)K(l?+f dS’E(j)(a,e’,z’)K(B kb= (b/a)«a and express thes_e functions as a sum over the
zeros of the respective denominators. The detailed expansion
_ f the functionsP,(q) andQ,(q) in terms of algebraic se-
=aZyly2 kz), 3.1 of the Tunclionsty 1d%n . :
aZolo2m(cosk2) G19  esis given in Appendix B. The resulting expressions for
where K, KT, K, andk!?, in Egs.(3.20—(3.22 can then
be integrated oveq by means of the residue theorem.

(e) — ’ ’
K a; f da(cosiz)(cosyz’)(cosnb)(conb’ ks, 2. The variational form

(3.20 From Eg.(1.9) the even part of the impedance is
K(162> = K(Zel) z(© 1
Il -
——=-——— | dSE¥(a,0,2)(cokz). (3.28
=ay, fdq(cosqz)(sinqz’)(sinna’)(cosna)klz, Zo 2WaZo|of & (
n

(3.21) Using Egs.(3.18 and(3.19 we can form

(e) (f f dS'dg2EY)(a,6',2')EX(a,0,2)K Y +E S (a,6',2' )EX) (a,0,2)K

+Eg?)(a,a',z’)Eﬁf)(a,G.DK(z?])/ (f dSE(a,0,2)(co%k2)? |, 329

a form independent of the normalization of the fields. If we ask that the numerator ¢8.26). be a minimum with respect

to the variations oE{® andE{®, subject to the constraintd SE®(a, #,z)coskz=1, we can use the method of Lagrange
multipliers to form



J:ffdS’dS[ZE(;,)(a,e’,z')Ege>(a,a,z)K<1‘;>
+EY(a,0',2)EP¥(a,0,2)K\Y+E'S(a,0',2 ) EP
x(a,e,z)Kg]—zxf dSE®(a,6,z)(cokz)

(3.30

and require thabJ=0 for variations insE{® and 6E{? . By
doing so we reproduce Eq63.18 and (3.19 and confirm
that Eqg.(3.29 is a variational form for the impedance.

=minimum,
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-2\, a,P®, (3.33

with L(®, M©  N©® andP® defined in Appendix A. The
vanishing of the partial derivative with respectdaives

> a, L' +b, M =\pPE. (3.39

The vanishing of the partial derivative with respecbtgives

We now proceed from the variational statement of the
problem to the solution. The first step is the expansion of thgye solve these two matrix equations to obtain

unknown fieldsE{® andE{® in terms of a complete set of
functions characteristic of the hole. Using the expansions

EX(a,0,2)=2, a,u,(6,2) (3.3)

and

E¥(a,0,2)=2, b,v,(6,2), (3.32

whereu, andv , are each an orthonormal set of functions in

the hole, we then have
_ ) )
J=2 a,a,L'? +2a,b,M® +b,b, N,

z® s

B 64B2k2a? sir?[ (ka/2)g/a] sin(u/2)sin(u' 7/2)cos v’ 7/2)cos vr/2)

> a,M +b,N, =0. (3.39
a=\H® 'p(©), (3.39
where the matrixt(® in Eq. (3.36 is defined as
HEO=LO_pMENE© 'ME. (3.37
Therefore we can write
Zy Y - 1 .38

Z®  \p@H@© 'pe  pleyE© pE’
independent of the normalization parameteAfter evalua-

tion of the integrals(see Appendix A we obtain the final
form for the even part of the impedance

(H),,

- r 2
ZO v’ pp M T

with u,u’ being odd, andv,v’ being even. The final
forms of the quantities ¥, M(®, andN(®, needed to evalu-
ate the matrixH(® in Eq. (3.39, are given in Appendix A.

B. The odd part of impedance

1. General analysis

We now consider the portion of the problem whé&§®

is odd in z. We perform expansion for the fields simi-
lar to those for the even portion of the problem. In

the expressions for the fields in Eq®8.1)—(3.14 we re-
place cokz by —j(sink?), sirkz by j(cokz, cogjz by
—j(sing?, and simz by j(coxy2 as governed by the
form of Eq. (1.5. In the expressions for the coeffi-
cients in Eqs(3.195-(3.17) we replace cagz by j(sinqz)
and siZ by —j(coxZ) as governed by the form of Eq.
(1.9.

The continuity ofH{® andH{” in the hole ar =a leads
to the following integral equations

[(vmlgla)®—k2a%][(v' w/gla)?—k?a?]

. (339

v pp!

J dS’E([ﬁ)(a,e’,z’)K(Z%)+J dS'ELY(a,0',2')Ky) =0,
(3.40
f ds'E(Z?>(a,a’,z')K<1‘f+fdS’Eﬁ,‘i)(a,e',z’)Kﬁ%’
=aZylg2m(—|j sinkz), (3.4)
where
K9=a>, fdq(sinqz)(sinqz’)(cosna)(cosna’)kll,
n
(3.42
Kig=KS
=—a2 Jdq(sinqz)(cosqz’)(Cosna)(sinna’)klz,
n

(3.43
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2. The variational form for the odd part

(0) — (i ; ’
K2 a; f dg(comyz)(comz’) (simo)(sim6" )kzz, From Eg.(1.9) the odd part of the impedance is

(3.449 (0 J
I - .
with k;; given by Eqs.(3.23—(3.25. In Egs.(3.20—(3.22) Zo  2mazZol, f dSE(a,6,2)(sirkz). (3.49
we use both sets of replacements outlined at the start of this
section to obtain Eqg3.40—(3.44). Using Egs.(3.40 and Eq.(3.41) we can form

—=—U f dS'dg2EY (a,6',2)EL(a,0,2)K Y +EL(a,6',2' )EL(a,6,2)K

z\®
+E(;f)(a,6’,2’)E5,°)(a,0,z)K(2‘§)]) / (J dSE®(a, 6,2)(sinkz)?|. (3.46
|
If we require that the numerator of ER.46 be a minimum C. Numerical results and discussions
with respect to the variations &~ andE{”, subject to the Formulas for direct numerical computation of the imped-

constraintf dSE”(a, §,2)(sinka=1, as we did for the even ance of a rectangular slot have been obtained. The even part
part, we find that Eq(3.46) is the variational form for the of the impedance is calculated using E&.39. The odd part
odd part of the impedance. After expandiBf’(a,6,z) and  of the impedance is calculated using E8.49. Finally, the
E%")(a,ﬁ,z) in terms of a complete set of functions charac-sum of the even and odd parts yields the result for the cou-
teristic of the hole, we ultimately obtain for the odd part of pling impedance.
the impedance To obtain suitable numerical accuracy we need>55
matrix for the summation over,»’, and a 3<x 3 matrix for
Zo 1 the summation oveg,u’. These matrix sizes are used to
(3.47 obtain the convergent results in bothy' and w,u’ in
Tables Il and Ill. We estimate the accuracy of the numbers
listed to be around 3%. To present the frequency behavior of
where the matribH(® in Eq. (3.47) is defined as the impedance in Figs. 5—-7 ax% matrix is used for the
summation ovew,v’, but onlyu=pu’=1 is taken for con-
venience. From a few test cases with terms uptou’ =5,
we estimate that the results for only=pu' =1 are approxi-
mately 6% low.

ZP " plg© po’

H© =[ (0 _pON© MO (3.48

After evaluation of the integralg¢see Appendix A we
obtain the final form for calculation of the odd part of the 1. Transverse rectangular slots

impedance We can use Eg93.39 and(3.49 to study the coupling
impedance of a rectangular slot of specific geometry. As an
—64B%k*a’cos| (ka/2)g/a] example, and to test our formulas, we present here a numeri-
' e cal study of the impedance of rectangular slots of different
azimuthal length. In order to compare our results with those
sin(um/2)sin( w’ w/2)sin(var/2)sin(v' w/2) presented by Filtz and Schdl4] we also choose the param-
[(var/(g/a))*—k*a*][(v' =/ (g/a))*—k*a’] eters of the LHC design.
In Figs. 5 and 6, the frequency dependence of both the
(3.49 real and imaginary parts of the coupling impedance of the
’ ' transverse rectangular slot is presented, with an angular
length 180 and 350 degrees, respectively. As expected, the
behavior with respect to frequency strongly differs from the
one of slots with the small angular length, even for relatively

Zo

! ’
v up

X(HO) L

with w,u’,v,v" being odd. The final expressions for the

quantitiesL(®, M, andN(®), needed to evaluate the ma-

trix H® in Eq. (3.49, are given in Appendix A. TABLE llIl. Re(2) (units uQ) for a square hole with 4 mm edge
length at frequency 1 GHa=16 mm.

TABLE II. Im(2) (units m(}) for a square hole with 4 mm edge

length at frequency 1 GHA=16 mm. Re@) b/a=1.2 b/a=1.3125 b/a=1.5
ka Wa=12  ba=13125  bla=15 Our result 7.54 521 3.58
Scholz’s resul{6] ~7.7 ~5.3 ~3.8

0.3351 6.46 6.57 6.60 Analytic result, usind9] 1.64 11 0.74
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35— 20 -
Ll
0=180 a=180°
30— g/a=02 g/a.:o-z
a=16 mm a=16 mm
b=21 mm b=21 mm
104
25
T 20 5 FIG. 5. Real and imaginary
5 — 0 parts of the coupling impedance
g’ is % of transverse rectangular slot with
- the azimuthal lengtlx=2B equal
to 180°.
10
- 1 0...
5_
O =T T T T 1 R S B B B B B B
0.00 0.04 0.08 0.12 0.16 0.20 0.00 0.04 0.08 0.12 0.16 0.20
k (mm " K (mm )
low frequencies. When we increase the azimuthal length of 2. Small rectangular hole

:Ee ls_IoEE thﬁ betr;]awor_ of :Eel |Impet?1a|_wce beclotmes Sr‘]',mr']lar © | order to check our results with the theory developed for
€ Imit when the azimuthal length 1S equa or Aw ne small holes and with the calculation of Schf84, a numeri-
corresponds to the annular cut in the inner pipe considered in

Sec. ), except for very low frequencies. In the limit of the cal study is performed for a liner radiug=16 mm for a
G P Y q ’ small square hole with the edge length equal to 4 mm, the

annular cut, for low frequencies, the real part becomes finite
q b ﬁarameters used by Scholz. The frequency dependence of

nd the imaginar r m itive. Th rivati . . oh
and the imaginary part becomes capacitive e derivatio oth the real and imaginary parts of the coupling impedance

and detailed explanation of this fact was given in Sec. Il. E‘presented in Fig. 7. Similar plots were obtained by Scholz

The general behavior of the impedance agrees with th . )
results of Filtz and Scholz, even though there is some shi 6], but the Pe?ks he o_btams for the cutoffs of the modes in
e coaxial region are in err¢v].

between our results and theirs. They used a similar field

matching technique, but their calculations of the impedance a. '”.‘ag'F‘aW r?ar_t. In -the well kn?{WE B_ethe jmall th|?
were performed without using a variational form, presum-2PProximation the imaginary part of the impedance below

ably requiring large matrices and considerable CPU timeCUtoff is given by

Our approach, which uses a variational form, requires only
modest size matrices. The simplicity of the calculation al-

lowed us to perform the present numerical study usin . 0 aptae
P p y 9 Z(w)=|Zo— >, (3.50
MATHEMATICA [5]. Co 4
35— 20—
0=350° 0=350"
30— g/a=0.2 g/a=0.2
a=16 mm a=16 mm
b=21 mm b=21 mm
10
25—
T 20 s . .
2 < FIG. 6. Real and imaginary
% Y parts of the coupling impedance
o 15— E of transverse rectangular slot with
the azimuthal lengtlx=2B equal
10 to 350°.
10
5 -
0 T T T T T 1 -20 71 T 111
0.00 0.04 0.08 0.12 0.16 0.20 0.00 0.04 0.08 0.12 0.16 0.20
k_(mm ) k_(mm")
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80 104
Square hole Square hole
g/a=0.25 g/a=0.25
w/a=0.25 _ / —0. o5
b/a=1.3125 8 [Wwa=o.
60— b/a=1.3125
C:E EE'G - FIG. 7. Frequency dependence
- = of the imaginary and real parts of
L\‘E,“O‘ 5 the impedance for a small square
- = 44 hole (for a=16 mm it corre-
sponds tov=g=4 mm).
20
2 -

0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
ka ka
with Z,=1207 (units (1), a the inner pipe radiusg, the b. Real part. Recently, the analytic formula for the real

velocity of light, » the angular frequencyg,, and a, the  part of the impedance of a circular hole in a coaxial structure
magnetic susceptibility and electric polarizabilty, respec-was derived by Palumbet al.[9]. Comparison of our results
tively. For the rectangular hole,, anda, are given approxi- with those of Palumboetal. [9], at the frequency
mately, forw/g<1, by [8]: ka=0.3351(1 GH2), with a=16 mm, is given in Table IIl.

) Note that some difference is expected due to the fact that

am=1wzg 1+0_3577ﬂ_0.0356‘%), (3.51) their formula is given for.a circular hole, and we approxi—.
16 mate our rectangle by a circle of the same area whose radius
) is r=+/16/7 mm. For low frequencies our numerical results
_ oo 4 w W= show that the real part of the impedance in a coaxial liner
LTI 1 0'56639 +0'139892 , (352 varies ak? in contrast to thé&* behavior for the radiation of

a hole into free space. The real part of the impedance also
wherew andg are the width and length of the slot, respec- decreasess as 1/btg). Similar behavior was predicted by
tively. For the frequenck,=1 GHz and dimensions of the palumboet al. [9]. However, our results in Table Il and
square hole given above, one obtains those of ScholZ6] are significantly larger than those ob-

. tained by using the formula derived by Palumdtaal. [9].
2=10.0073 0. (3.53 Based on our analysis we can perform the calculation for
low frequencies analytically. For frequencies below all cut-

At this point we note that in the problem that we consider, ) ;
P P offs, we consider only the TEM mode and obtain

there is in addition the wall of the outer pipe at radius
b=21 mm, withb—a=5 mm. Obviously, with such a ge-
ometry the result is expected to be influenced by the outer Re(
metallic wall. In the presence of the outer wall, one can
imagine an image dipole that creates the field in the coaxial
region in the same direction as the field in the pipe regionwherey=2a,, andxy=—2a,. The available static approxi-
reducing the coupling impedance. mations fora,, and «,, as well as the expressions with the
Therefore, because of the outer wall, we expect the resufrequency correctionfsl,10], can be now used to estimate the
to be less than the one given by E§.53, and to approach real part of the impedance for holes of different shape. Note
this result when the distande-a is increased. The study of that the value of the impedance obtained in this way will be
the impedance behavior with respect to the distdmea is  a few percent higher than the real one due to the fact that
given in Table Il. It suggests the expected asymptotic in-expressions fow,, and a, are given in the literature for a
crease in the imaginary part of the impedance. The detailelole in a plane metallic wallwithout the outer wall which is
investigation of the effect mentioned above lies outside theresent in the coaxial structyrdn the discussion following
scope of the present paper. Eq. (3.53 we noted that the fields in and near the hole are
The numerical results obtained are in reasonably goodnodified due to the presence of the outer wall. This can be
agreement with the expected values. Results obtained kyken into account by introducingtda correction factor in
Scholz[6] for the frequency 1 GHz are a few percent highera,,, anda,, but it should only be seen as a vehicle to use Eqg.
and atb/a=2 the numerical value obtained by Scholz is (3.54 when the dimensions of the hole are not negligible
already 10% above the result given by Eg.53). with respect to the distande—a. As an example, in Table

z)_ k2 _
Z,) 647%a’ In(b/a) (X7, (359
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TABLE IV. The electric polarizability and magnetic susceptibil- impedance of transverse and longitudinal rectangular slots of

ity of a square holeq=w). any size as well as different coaxial configurations. Numeri-
cal study for a long narrow transverse slot and a small rect-
b/a=12 b/a=13125 bla=15 bla—x angular hole are presented at different frequencies. The nu-

— aglw? 0.0998 0.1010 0.1015 0.1082 merical results obtained for both the imaginary and the real

part correspond to the expected ones for frequencies below
and above cutoff. For the small rectangular hole, the behav-
ior of the imaginary part is not totally consistent with the
IV we present thédo/a dependence of,, and a,, based on result of 'Scholz[6]. The real part of the impedance for the
numerical results for the square hole with the edge lengtfifeauencies below cutoff is higher than that expected from
equal to 4 mm, and radius of the linerequal to 16 mm. For the formula obtained by Palumis al. [9]. A discussion of
b/a—c the values fora,, and a, are in good agreement these differences is given in Sec. Il C.

with the results available in the literature for a square hole in

amiw? 0.2305 0.2339 0.2351 0.2532

a metallic plate. For the circular hole, the above expression ACKNOWLEDGMENTS
becomes The authors wish to thank Dr. S. Kurennoy for helpful
comments. This work was supported by the U.S. Department

Z 5k?r®
i of Energy.
Re( ZO) 36m%a’in(b/a)’ (3.59

) ) ) ) APPENDIX A: EVALUATION OF INTEGRALS
wherer is the radius of the hole. The expression given by

Eq. (3.59 is a factor of 5 larger than the one obtained by In this section we present the calculation of the integrals

Palumboet al. [9]. If we were to multiply the results in the and give the final form of expressions for the quantitiéf’é,

last row of Table Il by 5, they would correspond to Eq. M(®, N@, L, M), and N(®). with these expressions,

(3.55 and would now be in good agreement with the nu-Egs.(3.39 and(3.49 can be used for direct numerical com-

merical calculations. putation of the even and odd parts of the impedance, respec-
tively.

IV. SUMMARY . . .
1. Expressions for the numerical calculations of the even part

In Sec. Il we present the analysis of the calculation of the The expansion forms in Eq€3.31), (3.32 should be

Coull‘?"ﬂb% Imp(laldt?]r'lclf of anWannLtJ)Ita( cut in ? CoanIa| Illnerl ?fbased on the specific characteristics of the problem geom-
hegligiole wall thickness. Vve obtain equations for caicuiat-o ry. Using the symmetry argument given in thé&roduction

ing the even and odd parts of the impedance, expresseg o corract boundary conditions at the edges of the hole,
in variational form. The use of the variational method e choose

makes numerical study fast and accurate. In order to check

our technique, an analytic calculation is performed for low v wr
frequencies and compared with the numerical results. The Ef(a,0,2)=2, aﬁfﬂcos(ﬂz) COS(ﬁﬁ) (A1)
agreement between the analytic and numerical results is very e

good. and

In Sec. Il we present a detailed analysis of the calculation
of the coupling impedance of a rectangular slot in a coaxial fvm \ pm
liner of negligible wall thickness over a wide frequency Ef;’)(a,e,z)=% bfism(ﬂz)sm(ﬁe), (A2)
range. We obtain equations for calculating the even and odd
parts of the impedance, expressed in variational form. All thewith x being odd, andv being even. In Eqs(A1)—(A2),
integrals in the final expressions given by E¢®.39 and 2A=g is the length of the hole in the longitudinal direction
(3.49, are already performed, so that it is only necessary t@, and B is the angular length of the hole in the azimuthal
specify the geometrical parameters of interest. The formuladirection 6. Then the matrices®, M, N in Eq. (3.37
obtained can be used for numerical study of the couplingvill be given by the following expressions

L(e)—J'B fB fA fA d6de’dzdZ cod —— BT ) eod 2 2 cod A g
=) zdZcog 5,2 |c0§ 7 0|cog 52" |cog g

x; ficdq(cosqz)(cosqz’)(cosne)(cosne’)kll, (A3)

M(e)_foBfAfAdgdg/d dz E ,LL_770 i V,_W' i ,u,’_770,
= .. zdZcog 55 2| Co§ S0 |sin 542" |sin —2

x; f:dq(cosqz)(sinqz’)(cosna)(sinna’)klz, (A4)
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N(® = j f f f dAde’dzdZsin —z sinl 7 g sin V,—Wz sin| La
2B 2A 2B
XE f dq(singz)(singz’)(sinn#)(sinn b’ )k,,, (A5)
n — 0

wherek;; are given by Eqs(3.23—(3.25. The matrixP(® in Eq. (3.36) is given by

pe= j de cos{ )J dzcos( )(coskz). (AB)

After evalution of the integrals we obtain the final form for the quantiti€s, M(®), andN(®, needed to evaluate the matrix
H® in Eq. (3.39. They are given by the following expressions

16B%ka Sln(,u77/2)SIn(,u 7/2) 1
(e) — Leven = ev Leven —
L . 521 Gy 2In(b/a) %E oGt n=0, (A7)
b/a)2"
Lge):E FL(,LL,,LL',ﬂ,B)ka n (_ ) even_z G even_{_z an even
n 1 (b/a)2 ns
n? (Png)? 1
- k2 ZGLeven_ b ZG eve -
2 ;l (an)Z [ ( ns) 2a2_(bns)2
+> L[kzazGLe“”—(c’s)zGLe"er] n#0 (A8)
& k2a2_(clf15)2 Kk n cr;s ’ y
ME'=N§=0, n=0, (A9)
(Png)”
M®=> FM(u,u’,n,B) E T ZGb,eve”JrZ BaGh|, %0, (A10)
n | s= ns Cns
(e) N ’ ( pns)z Neven Neven
N :; FN(w,u',n,B) Z TR~ +2 BnG 2|, n#0, (A11)
L= ns ns

where explicit expressions fét-, FM, FN, G-, GM andGN
are given in Eqs(A40)—(A42) and (A30)—(A32). The coef- EX(a,6,2) 2 al sm(ﬂz
ficients a5, Bns and the quantitied, s, c,s, bs, C.s are
given in Eqgs.(A23)—(A28).
Note that in Eq(A8) terms WithG,';even cancel each other, and
which corresponds to the fact that only the mode withO
can propagate in a coaxial region with the speed of light
(TEM mode. Therefore, in order not to lose accuracy, terms E(eo)(a,a v4) 2 b“%os(—z)sm('u 6), (A13)
with Gteve”(mﬁO) should be excluded from numerical cal- 28
culations.

3( -8 9) (A12)

with w and v being odd. In Eqs(A12) and(A13), 2A=g is
) ) ) the length of the hole in the longitudinal directianand 2B
2. Expressions for the numerical calculations of the odd part is the angular length of the hole in the azimuthal direction
For the odd problem we choose the following expansioras was true for the even part. Then the matric&, M(®,
of the fields: N in Eq. (3.48 will be given by the following expressions:
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L(O)—J J j f dede’ ddesm BT ) sin Lz co La’
2B 2A 2B
xz j dq(sinqz)(singz’)(com ) (con b’ )k, (A14)
n —
B (B (A v u'
0 — _ ) Laskl) il BT
M J_BJ_BJ_IJ dede’ dzdism(ZAz cos( B 0)005( oA 2 )sm( B 0 )
X f dq(singz)(coxyz’ ) (con ) (sinn b’ )k, (A15)
n —
“”—f f j f dede’dzdZco —z sif 279 co v " |'sin| Ha’
2B 2A 2B
x> f dq(cogyz)(cogyz’)(sinn6)(sinn 6’ ko, (A16)
n — o
wherek;; are given by Egs(3.23—(3.25. The matrixP(® in Eq. (3.47 is given by
o_ [® I A v .
P =f_Bd0 cos( 5B 0 f dz sm(ﬂz (sinkz). (A17)
After evaluation of the integrals for the quantitie®, M, andN(® we obtain
lGszaSIn(,uW/Z)SIn(,u l2) 1
(0) — Lodd__ od odd _
Lo ' e 521 GbOS 2In(b/a) +2 005G » n=0, (A18)
(b/a)2"
(0) — L ’ Lodd__ Lodd Lodd
L }n) Fl(u, ,n,B)ka‘ " T G, g}l Gbns+s§=)l n G
n? (Phe? L 1
+ k?a?G_ ¥~ (b} )?G, % s
k2a2 s§=:1 (prqs)Z_nZ[ k ( ns) bns k2a2_(brr]s)2
an 2.2~Lodd 1 y2~Lod
+2 2,2 2[k a Gko _(Cns) G ’ d] ’ n;éo' (Alg)
s=1 k-a ns Chs
MBO):NBO)_O' n=0, (A20)
M (pr’]S)Z Modd odd
=, FM(u,u’,n,B) ———G, +2 BnsG_ ™|, n#0, (A21)
n s=1 ( ns) b s=1
(o) N ' (prqs)z odd odd
N'=2> FM(u,p',n,B) o2 Gt 2 BB, n#0, (A22)
n s=1 (pns) -
|
where explicit expressions fdk-, FM, FN, G-, GM, and  and the quantitieb,s, Cps, b/, Cps are given by
GN are given in Eqs(A40)—(A42) and (A33)—(A35). In
Eqs.(A?).—(All) and(A18)—(A22), the coefficientsy,s and b2 = —pZ., Jn(Pne)=0, (A25)
Bns are given by
\]ﬁ(g-nsb/a) Cﬁs: kzaz_o'ﬁs' Falons) =0, 0y0=0, (A26)

s 325 bla)— 3 any)’ (A23)

Bns=[In(anbla)PI[[ I} (o) bla)]][n?/ (o)) ?—1]
—[JIN(a}91n?% (o) bla)?—1]], (A24)

(chd?=K’a’—=(a19?  Gp(opg) =0,

(bpe?=Kk?a?—(p,d? JN(phd=0,  (A27)

o-r,10 =0.
(A28)
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Note that, as for the even case, terms vﬁb’dd should be ~ Glodd
excluded from Eq(A19) from numerical calculations.

S y=v'#0, (A33)
3. General definitions
Expressions for the evaluation of the matri@sn Egs. Ws( sin H)(sinz) gond
(A7)—(A11) and (A18)—(A22) are obtained by performing 2 2
integrals overz, z', andg.
For the even part, for example, we intergrate oxemnd GModd:
z' first. The remaining integral ovey can be expressed in
terms of the following integral: v\ n o ,
I _fw 4 g%sirqA 1 “glajka” 7T 70 (A34)
) Lol 7= Pl 2R 2 7] (Pa—wd)
(A29) via\n [ vw\l  vaw g
—Wg g/—a E SIHT SIHT gone p#EY,
The contour goes below any poles on the negativeqeaiis
and above any poles on the positive rgadixis in order to  GNodd;
satisfy the outgoing wave boundary condition for the fields
generated by the obstacle. For the terms withot equal to 1
v’ the only contribution comes from simple poles at ESN“, v=v'#0,
g=*ws/a. For the terms withv equal »' an additional (A35)
contribution comes from the second order poles at
q=*+ vw/2A. The resulting expressions for the elements of 1 [v'@\( v#w va\[ v\ (wi—k%a?) ond
the matricesGeven GNeven and GMevenin Eqgs. (A7)—(A11) kalgra/lgia sin—-|| sin—- W, '
are the following:
GLeven vEY,
s ,=p'=0, with »,»" being odd.
In the expressions above we use the following notation
Y, w=v'#0, (A30)
SO_ 4 1+exp(—jwsg/a) an jg/a
v ' - ¥ [warl(gla)] 2 /(gla)]?—ws’
ws( C057)<COS 5 )S“O”d vEV' {[vml(g W) Lvml(gla)] (A§6)
GMeven 1+exp —jwg/a) jgla
S=47w S +27 ,
Hlval(gla)P-wey? " [val(gla) P —w;
PTINw z0 (A37)
g/laj ka™’ '
A31
(A31) 2(w2—k?%a?) 1+ exp(—jwsg/a)
' ' SNA— 47| —
s ”/_77 kl COSVZW)(COS 2 )Snond v#E Y] g/a Ws {[vml(gla))*=w}?
a/ ka
’ . igfallvml(g/a) - Ka?) -
GNever T valgla) P —wZ (A38)
isNd' V:V,7&0, Snond:4,n_ 1iexq2_jwsg/a) —
ka (A32) {[vw/(g/a)]z—ws}{[v’q-r/(g/a)]z—wsi )
A39
1 /(va\ve v v (Wg—kzaz) nond
kalgra)\ gia COS—~ || COS—— Tw, ST In Egs. (A36)—(A39), the = sign corresponds to the even

and odd parts, respectively.
v#v'; Note that, in Eqs(A30)—(A39), we use general notation
ws, which should be replaced ke, b,s, Cns, bs, OFC/,
with v,7’ being even. Here the superscriptsnd nond cor- as shown by the subscript of the mat® in Eqgs. (A7)—
respond to diagonal and non-diagonal elements. (A11) and(A18)—(A22). FunctionsF', FM, andFN in Egs.
For the odd part of the impedance, the resulting exprestA7)—(A11l) and(A18)—(A22) are obtained from the integra-
sions for the elements of the matric&odq, GNodd and tion over # and #’. These functions are given by
GModd in Eqgs. (A18)—(A22) are the following: F(u,u’,n,B):
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o BT _pT
' 2B 2B "
2B(u' m2B)sin(u' ml2)comB  pm BT p'
"7I2B)2—n? 28 "7 2B
(u'm/2B) (A40)
2B(um/2B)sin(um/2)con B um o p'
(ul2B)%—n? ' 2B 2B

4(uarl2B) (' wI2B)sin( wm/2)sin( u’ 7/2)co$nB
[(um/2B)*—n?])[(p' 7/2B)?—n?] ’

Mmoo u'

2
B, 2B 2B

=n,

2Bn sin(u' w/2)conB
(u'ml2B)2—n?

p
2B

2B(um/2B)sin(um/2)conB
(u/2B)%—n? '

mr
2B 287

(A41)
4An(wmI2B)sin( war/2)sin( u’ 7/2)co$nB
[(um/2B)*—n?][(p' mw/2B)*~n?]

Xy

287" n* g 2B’
FN(u,u',n,B):
2 PT_pT_
BY 8=z "
2Bnsin(u' ml2)comB  um i,u’ﬂ'
"ml2BY2—n? ' 2B " 2B
(' m/2B) (A42)
2Bn sin(um/2)cosnB ,m-rg& /.L"7T
(wmi2BY2—nZ ' 2B " 2B
4n? sin(uwl2)sin(u' wl2)cog nB  uw p'ar
[(wm/2B)2—n?][(u' m/2B)2—n?]’ 2B 2B -

APPENDIX B: EXPANSION IN TERMS OF SERIES
OF ZEROS OF BESSEL FUNCTIONS

In this section we present expressions for the expansion of
P.(q) andQ,(q), which are present in the integral equation,

in terms of algebraic series of zeros of Bessel functions.

1. Expansion ofP,(q)
The quantityP,,(q) is given by the following combination
of Bessel functions and their derivatives,
Jn(xa)
kald,(ka) B

F/(ka)

Pn(a)= xaF, (xa)|’

(B1)
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whereF,(«a) is given by

Fo(ka)=Y,(ka)J,(kb)—J,(xka)Y,(kb), (B2)
with x2=Kk?

in [11]:

— 2. For the first term we use the relation given

(ka)?
2

ns

r(n+1)(Ka/2)*“Jn(Ka):[[1 (1— ) (B3)

Taking the logarithmic derivatives of both sides, we obtain

n »

(Ka)z B s

Jn(xa)

kad,(ka) - (B4)

1
p2—(xka)?’

and, using the definition of the propagation constantve
obtain

_ n
"~ (ka)?

J)(ka)

kad,(ka) (B5)

-2 .

ES: qzaz_bﬁs
For the second term in E¢B1), the singularity atkca= o5,
with F,(o,9 =0, gives us

F/(ka) ns
— = —_—, B6
kaF,(xa) ey} (Ka)z—(fﬁs (B6)
wherea,s is given by the following expression:
J2(ansbla)
n ns (B?)

ns™ ‘]ﬁ( U'nsb/a) - J%(Uns) .

There is also a singularity ata=0. For then=0 term, we
have the additional terms

Fo(ka) 1

kaFo(xa)  (xa)ZIn(bla)’ (B8)
and forn#0 we have the additional terms
Fao(ka)  n [p®+a®
kaF,(ka) (ka)? —b2"| (B9)
We can then we rewrite EB1) as
b ()= n b2n 1 1 s
n(q)_ - (Ka)Z 2n_b2n + (Ka)Z In(b/a) no
o0 o0 a
E +2> ———,
= bz &1 (qa)®—ch,
(B10)
where
bﬁs: k? 2_pﬁ57 ‘]n(pns)zov (Bll)
=k?a?— o2, Fp(oned=0, 0n=0. (B12)

We rewrite Eq.(B10) as
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o0

1 1 g

— - _ n=0
E 1 g°a —bgs In(b/a) g%a®—k*a? +2§1 g%a’—cg’
Pn(a)= n - (B13)
- 2 — b 2n +2>, % n#0
" oZa?— b2 —a? qZa?—k2a? ' ‘& a2’ :

At this point we note that after combining expressionsRq(q) andQ,(q) in the expression fok,; in Eq. (3.23, terms for
n= 0, with singularity atg=k, cancel each other. This corresponds to the fact that only the mod@&withcan propagate in
the coaxial region with the speed of ligffEEM mode.

2. Expansion ofQ,(q)
The quantityQ,(q) is given by the following combination of Bessel functions and its derivatives

Jn(ka) G,(ka)
Qn(@)= xal(ka) xaGl(ka)l|’ (B14
whereG,(«a) is given by
Gn(ka)=Y,(ka)J,(kb) =Y/ (xb)I.(xa). (B15)
For the first term in Eq(B14) one can use the relation given [ihl]:
2T (n)(ka/2) "/ ka) =ﬁ ( (2)* (B16)
s=1 (phe)?
The final expression for the first term in E@14) is the following:
Jn(ka L7 1
e G 2S ((p(f)“f) Pa?— (097" (817
where
(bhe)?=k*a%—(pps)?,  JIn(Pns)=0. (B18)
For the second term in EqB14), singularity atka= o, with G/ (o) =0, gives us
Ka
i 2 G 19
where 3,5 is given by the following expression:
Bns=[In(ahsb/a) PHI I (onbla)1P[n?/ (o) ? = 11-[I(0p9) 12[N*/ (opbl@)®— 113, (B20)
In addition, there is a singularity ata=0. For then=0 term, it gives
Go(ka) 2
xaGyxa)  (xa)[(bTad)—1]" (B2D)
and forn# 0 there is no additional singularity. Then we rewrite H§14) as
o 2 "
Qn(q)= —)250 +22, ((annS)—n T b2 22, (qa)fw (822)
whereb/ is given by Eq.(B18), c, is given by
(cr®=k?a?—(o7d?  Gp(opg =0,
010=0, (B23)

and B, is given by Eq.(B20) for s#0 (for s=0,n=0 term it is given byByo=1/[(b*a? —1]). We rewrite Eq.(B22) as
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2 b2 + 22 BOS n=o0
= <bo 27 b7—a? ekl CE el (e,
Qn(@)={ - (pr )2 - 8 (B24)
ns S| R— n+0.
Z (bns)2 (pns)2 +2521 q2a2_(crlws)21
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