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Analytic and numerical analysis of the longitudinal coupling impedance of a rectangular slot
in a thin coaxial liner

Alexei V. Fedotov and Robert L. Gluckstern
Physics Department, University of Maryland, College Park, Maryland 20742

~Received 15 April 1997; revised manuscript received 3 June 1997!

Beam pipes of high-energy superconducting colliders require a shielding tube~liner! with pumping slots to
screen cold chamber walls from synchrotron radiation. Pumping slots in the liner walls are required to keep
high vacuum inside the beam pipe and provide for a long beam lifetime. As previously discussed@Fedotov and
Gluckstern, Phys. Rev. E54, 1930~1996!#, for a long narrow slot whose length may be comparable with the
wavelength, the usual static approximation for the polarizability and susceptibility that enter into the imped-
ance is a poor one. Therefore, finding semianalytic expressions for the impedance of a rectangular slot in a
broad frequency range is highly desirable. We develop a general analysis based on a variational formulation,
which includes both the realistic coaxial structure of the beam-pipe and the effect of finite wavelength, in order
to calculate the coupling impedance of a rectangular slot in a liner wall of zero thickness. We then present a
numerical study of the frequency dependence of the coupling impedance of a transverse rectangular slot.
Numerical results for a small square hole are presented for frequencies above and below cutoff, and compared
with the results of other calculations.@S1063-651X~97!07109-2#

PACS number~s!: 29.27.Bd, 41.20.2q
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I. INTRODUCTION

The pumping slots in the liner are the chamber disco
nuities, and electromagnetic fields diffracted by them c
affect beam stability. This beam-chamber interaction can
described in terms of the coupling impedance. The conv
tional treatment of the coupling impedance using the st
approximation is not sufficient, since for long narrow slo
the effect of finite wavelength becomes important@1#. As a
first step in obtaining results for a rectangular slot of ar
trary dimensions, in Sec. II we consider a liner with a sy
metric annular slot in an inner conductor of negligible thic
ness~Fig. 1!. This analysis serves to illuminate the physi
of the problem and to provide a method to obtain accur
numerical results. For low frequencies, the numerical res
are checked against analytical results, with which they ag
In Sec. III we treat the same coaxial waveguide as ear
but this time consider the azimuthally asymmetric probl
of a single rectangular slot in the inner conductor~liner!,
whose thickness is again negligible~Fig. 4!. We note that our
analysis can be easily extended to any number of slots.

We consider a point chargeI 0 , traveling along the axis a
ultrarelativistic speed. We then calculate the coupling imp
ance, which turns out to be closely related to the Fou
transform of the wake function, as a function of frequen
The solution is based on the method of field matching at
liner radius, including the discontinuity. We construct
variational form for the impedance, which is stationary w
respect to arbitrary small variations of the field about its t
value. With such an expression it is possible, by judiciou
choosing a trial field, to obtain very accurate results. T
variational approach ensures very good accuracy for the
pedance, since the error will be proportional to the squar
the error in the chosen trial fields. A concomitant advanta
is that the variational technique allows us to obtain accu
numerical results with matrices of modest size.
561063-651X/97/56~3!/3583~19!/$10.00
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Since the driving current on axis is proportional
exp(2jkz), the problem is simplified by obtaining results fo
an even driving current coskz and an odd driving curren
2 j sinkzseparately. This separation is needed to constru
variational form for the impedance.

A. Field matching method

The field matching is performed at the radius of the inn
conductor~liner! in the opening. We call the region insid
the inner conductorr<a the ‘‘pipe region’’ and the region
outside the inner conductora<r<b the ‘‘coaxial region.’’
The technique consists of expanding fields in both regi
into a complete set of functions. At the common interface
fields have to be matched, yielding equations for the exp
sion coefficients. The resulting integrals contain ratios of
Bessel function and its derivative, which are then expan
into algebraic series of Bessel function zeros, and the res
ing integrals are evaluated by means of residue calculus.

FIG. 1. Schematic diagram of an annular cut in a thin liner
3583 © 1997 The American Physical Society
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solution is then obtained by finally truncating and inverti
the resulting matrix equations.

B. The longitudinal coupling impedance

The source fields in the frequency domain generated
the driving current

Jz~x,y,z;k!5I 0d~x!d~y!e2 jkz ~1.1!

are the following:

Er
~s!~r ,z;k!5Z0Hu

~s!~r ,z;k!5
Z0I 0

2pr
e2 jkz, ~1.2!

Ez
~s!~r ,z;k!50, ~1.3!

where Z05120p ~units V!, k5v/c. The definition of the
frequency dependent longitudinal coupling impedance of
obstacle can be taken to be

Zi~k!5
21

I 0
E

2`

`

dzejkzEz~0,u,z;k!, ~1.4!

whereEz(r ,u,z;k) is the axial electric field in the frequenc
domain, with frequency dependence exp(jvt), wherev5kc.
The field componentEz(r ,u,z;k) can be written in the pipe
region as

Ez~r ,u,z;k!5(
n
E

2`

`

dqe2 jqz2 jnuAn~q!
Jn~kr !

Jn~ka!
,

~1.5!

which is the general solution of the wave equation tha
regular atr 50. Herek, defined byk25k22q2, is the radial
propagation constant, anda is the radius of the liner. The
contour goes below any poles on the negative realq axis and
above any poles on the positive realq axis in order to satisfy
the outgoing wave boundary condition for the fields gen
ated by the obstacle.

If we setr 50, only then50 term survives, and Eq.~1.4!
becomes

Zi~k!52
1

I 0
E

2`

` dqA0~q!

J0~ka!
E

2`

`

dze2 jz~q2k!52
2p

I 0
A0~k!,

~1.6!

where we used

E
2`

`

dze2 jz~q2k!52pd~q2k!. ~1.7!

For an obstacle configuration which does not extend into
pipe (r ,a), one can perform a Fourier inversion of E
~1.5! in z andu for r 5a to obtain

An~q!5
1

4p2 E
0

2p

duE
2`

`

dzejqz1 jnuEz~a,u,z;k!.

~1.8!

Therefore, the longitudinal coupling impedance in Eq.~1.6!
can be written as
y

y

s

-

e

Zi~k!

Z0
52

1

2paZ0I 0
E dSEz~a,u,z;k!ejkz, ~1.9!

where the surface integral is only over the hole, sinceEz
vanishes on the liner wall. In Sec. II, where we consider
azimuthally symmetric problem, the above expression
comes

Zi~k!

Z0
52

1

Z0I 0
E dzEz~a,z;k!ejkz. ~1.10!

Since the driving current on axis is proportional
exp(2jkz), the problem is simplified by obtainingZi(k) for
an even driving current coskz and an odd driving curren
2 j sinkz separately and then taking their sum. We sho
note that the variational method becomes possible only w
the problem is separated into an even and an odd part. In
even problemEz , Hr , Hu are even inz, while in the odd
problemEz , Hr , Hu are odd inz ~wherez50 is chosen to
be the center of the hole!. In any caseEz , Er , Hu are always
even inu, andHz , Hr , Eu are always odd inu. We use the
superscript (e) for the even problem and the superscript (o)
for the odd problem.

II. LONGITUDINAL COUPLING IMPEDANCE OF AN
ANNULAR CUT IN A COAXIAL LINER

A. General analysis

1. Even part

A schematic diagram of our geometry is shown in Fig.
In the pipe region the fields are given by the source fie
plus a general solution of the Maxwell equations for the c
lindrical waveguide. In the coaxial region we have the ge
eral solution of the Maxwell equations for the coaxial wav
guide. Due to the symmetry of the problem we have nou
dependence, and therefore need to consider only the
muthally symmetric TM modes, for which

Ez
~e!~r ,z!5E dq~cosqz!A~e!~q!F J0~kr !

J0~ka!
,
F0~kr !

F0~ka!G .
~2.1!

Here we use the notation where the first part in square bra
ets corresponds to the pipe regionr<a, and the second par
corresponds to the coaxial regiona<r<b, with the function
F0 being the solution of the Maxwell equations for the c
axial region for the TM modes@F0(u)5Y0(u)J0(kb)
2J0(u)Y0(kb)#. Note that we consider the inside and ou
side surfaces of the liner both to be atr 5a, since we neglect
the thickness of the liner compared to the slot width. The
fore, the coefficientA(e)(q) is the same for bothr ,a and
r .a, sinceEz

(e) is continuous atr 5a within the hole and on
both sides of the liner surface, whereEz

(e)50. The corre-
sponding azimuthal magnetic field is given by
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Z0Hu
~e!~r ,z!52 jkE dq~cosqz!A~e!~q!

3F J08~kr !

kJ0~ka!
,

F08~kr !

kF0~ka!
G1FZ0I 0

2pr
~coskz!,0G .

~2.2!

For the coefficientA(e)(q) we obtain the even part of Eq
~1.8!, namely,

A~e!~q!5
1

2p E dz~cosqz!Ez
~e!~a,z!. ~2.3!

The next step is to match the tangential magnetic fi
components within the hole. The continuity ofHu

(e) in the
hole gives

Z0I 0 coskz5 jka2E dz8Ez8
~e!

~a,z8!E dq~cosqz!

3~cosqz8!P~q!, ~2.4!

where

P~q!5F J08~ka!

kaJ0~ka!
2

F08~ka!

kaF0~ka!
G . ~2.5!

We can rewrite Eq.~2.4! in the following form,

E dz8Ez8
~e!

~a,z8!K11
~e!~z,z8!5Z0I 0~coskz!, ~2.6!

where

K11
~e!~z,z8!5K11

~e!~z8,z!

5aE dq~cosqz!~cosqz8!k11, ~2.7!
w

d

em

th
d

with

k115 jkaP~q!. ~2.8!

We now treatP(q) as a function ofka with kb5(b/a)ka
and express this function as a sum over the zeros of
respective denominators. The final result for these exp
sions is the following:

P~q!522(
s51

`
1

q2a22bs
2 2S 1

ln~b/a! D 1

q2a22k2a2

12(
s51

`
as

q2a22cs
2 , ~2.9!

where

q2a25k2a22k2a2, bs
25k2a22ps

2 ,

J0~ps!50, ~2.10!

cs
25k2a22ss

2 , F0~ss!50, ~2.11!

andas is given by the following expression:

as5
J0

2~ssb/a!

J0
2~ssb/a!2J0

2~ss!
, s>1. ~2.12!

HereF0(s) is given by

F0~s!5Y0~s!J0~sb/a!2J0~s!Y0~sb/a!, ~2.13!

in contrast to our earlier definition ofF0(u) needed to define
F08(u). The resulting expression forK11

(e) , in Eq. ~2.7!, can
then be integrated overq by means of the residue theorem

If we now multiply Eq. ~2.6! by Ez
(e)(a,z) and integrate

both sides overz, then divide by@*dzEz
(e)(a,z)(coskz)#2,

we obtain
Z0I 0

*dzEz
~e!~a,z!~coskz!

5S E E dz8dzEz8
~e!

~a,z8!Ez
~e!~a,z!K11

~e!~z,z8! D Y S E dzEz
~e!~a,z!~coskz! D 2

. ~2.14!
n

lly
Using the definition of the impedance for the even part,
can rewrite Eq.~2.14! above as

Z0

Zi
~e! 52

@**dz8dzEz8
~e!

~a,z8!Ez
~e!~a,z!K11

~e!~z,z8!#

@*dzEz
~e!~a,z!~coskz!#2 ,

~2.15!

which is easily seen to be a variational form for the impe
ance, with trial functionEz

(e)(a,z).
To proceed from the variational statement of the probl

to the solution, we expand the unknown fieldEz
(e)(a,z) in

terms of a complete set of characteristic functions of
hole. For the case of the even problem, we choose
e

-

e

Ez
~e!~a,z!5(

n
ancos

np

g
z, ~2.16!

with n being even so that]Ez /]z50 at z56g/2. In Eq.
~2.16!, g is the width of the slot in the longitudinal directio
z.

After evaluation of the integrals in Eq.~2.15!, the solution
for the even part of the impedance is obtained by fina
truncating and inverting the resulting matrix equations.

2. Odd part

We now consider the portion of the problem whenEz
(o) is

odd in z, using the same notation as for the even part.
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Ez
~o!~r ,z!52 j E dq~sinqz!A~o!~q!F J0~kr !

J0~ka!
,
F0~kr !

F0~ka!G .
~2.17!

Z0Hu
~o!~r ,z!52kE dq~sinqz!A~o!~q!

3F J08~kr !

kJ0~ka!
,

F08~kr !

kF0~ka!
G2F j

Z0I 0

2pr
~sinkz!,0G .

~2.18!

For the coefficientA(o)(q) we obtain the odd part of Eq
~1.8!, namely,

A~o!~q!5 j
1

2p E dz~sinqz!Ez
~o!~a,z!. ~2.19!

The next step is to match the tangential magnetic field co
ponents within the hole. The continuity ofHu

(o) in the hole
gives
w

d-

em

th

in

th
m
th
m
r

d

-

2 jZ0I 0~sinkz!5 jka2E dz8Ez8
~o!

~a,z8!E dq~sinqz!

3~sinqz8!P~q!. ~2.20!

We can rewrite Eq.~2.20! in the following form

E dz8Ez8
~o!

~a,z8!K11
~o!~z,z8!52 jZ0I 0~sinkz!,

~2.21!

where

K11
~o!~z,z8!5K11

~o!~z8,z!

5aE dq~sinqz!~sinqz8!k11, ~2.22!

with k11 given by Eq.~2.8!. If we now multiply Eq.~2.21! by
Ez

(o)(a,z) and integrate both sides overz, then divide by
@*dzEz

(o)(a,z)(sinkz)#2, we obtain
2 jZ0I 0

*dzEz
~o!~a,z!~sinkz!

5S E E dz8dzEz8
~o!

~a,z8!Ez
~o!~a,z!K11

~o!~z,z8! D Y S E dzEz
~o!~a,z!~sinkz! D 2

. ~2.23!
an
hat

lar
the
e
the

the
ffi-

f

Using the definition of the impedance for the odd part,
can rewrite Eq.~2.23! above as

Z0

Zi
~o! 52

@**dz8dzEz8
~o!

~a,z8!Ez
~o!~a,z!K11

~o!~z,z8!#

@*dzEz
~o!~a,z!~sin kz!#2 ,

~2.24!

which is a variational form for the odd part of the impe
ance.

To proceed from the variational statement of the probl
to the solution, we expand the unknown fieldEz

(o)(a,z) in
terms of a complete set of characteristic functions of
hole. For the case of odd problem, we choose

Ez
~o!~a,z!5(

n
an sinS np

g
zD , ~2.25!

with n being odd so that]Ez /]z50 again atz56g/2. After
evaluation of the integrals in Eq.~2.24!, the solution for the
odd part of the impedance is obtained by finally truncat
and inverting the resulting matrix equations.

B. Analytic derivation for low frequencies

The even part of the impedance can be related to
magnetic susceptibility of the hole. The odd part of the i
pedance can be related to the electric polarizability of
hole. For the transverse narrow slot in the Bethe approxi
tion for a small hole, the magnetic susceptibility is propo
tional to l 3, wherel is the azimuthal length of the slot, an
the electric polarizability is proportional tolw2, wherew is
the width of the slot~see, for example,@1,2#!. Therefore, one
e

e

g

e
-
e
a-
-

would expect the odd part to be negligible as long asl @w.
Numerical study for slots with azimuthal length larger th
the radius of the curvature of the pipe in Sec. III showed t
the argument discussed above holds even whenl .a ~with a
being the radius of the inner conductor!, where the small
hole approximation already fails.

In our particular case where the slot is a narrow annu
cut, for low frequencies the leading nonvanishing term of
odd part is a factor of (g/a)2 less than the same term in th
even part. This can be seen by performing an analysis for
odd part similar to the analysis given below. To present
analytic result for a narrow annular cut it is therefore su
cient to consider only the even part of the impedance.

From Eq.~2.15!, the variational form for the even part o
impedance is the following:

Zi
~e!

Z0
5

j

ka2 S E dzEz
~e!~a,z!~coskz! D 2Y

S E E dz8dzEz8
~e!

~a,z8!Ez
~e!~a,z!

3F E dq~cosqz!~cosqz8!P~q!G D , ~2.26!

whereP(q) is given by Eq.~2.5!. For smallka we write the
quantities in Eqs.~2.10! and ~2.11! as

bs
252ps

2 , bs52 jps , cs
252ss

2 ,

cs52 j ss , c0
25k2a2. ~2.27!
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FIG. 2. Real and imaginary
parts of the coupling impedanc
of an annular cut in a coaxia
liner.
fo

l

dy

of
are
sing
By integrating overq in the square brackets of Eq.~2.26!, we
obtain

2(
s51

p

psa
@exp~2lps /a!1exp~2l̃ps /a!#

2
j a0p

ka2 @exp~2 j lk!1exp~2 j l̃k!#

1(
s51

pas

ssa
@exp~2lss /a!1exp~2l̃ss /a!#, ~2.28!

where as is given by Eq.~2.12! and a0521/@2 ln(b/a)#.
Here we use notation

l5uz1z8u, l̃5uz2z8u. ~2.29!

For smalll, l̃, z6z8 we can replace the sums in Eq.~2.28!
by integrals. By evaluating the integrals, Eq.~2.28! becomes

2
1

a
F lnS a2

ll̃
D 12C1G2

1

a
F lnS a2

ll̃
D 12C2G

2
2 j pa0

ka2
~22 jkuz2z8u2 jkuz1z8u!, ~2.30!

where constants of integrationC1 and C2 can be found by
simple numerical calculation. The resulting expression
the impedance becomes

Zi
~e!

Z0
5

@*dzEz
~e!~a,z!#2

**dz8dzEz8
~e!

~a,z8!Ez
~e!~a,z!M ~z,z8!

, ~2.31!

where
r

M ~z,z8!5F22pa012 jka~C11C2!12 jka ln
a2

uz21~z8!2u

1 j pa0k~ uz1z8u1uz2z8u!G . ~2.32!

In Eq. ~2.31! the integrals overz and z8 go from 2g/2 to
g/2, with g being the width of the cut in the longitudina
direction. After evaluating the integrals in Eq.~2.31!, using
the static approximation forEz8 , Ez , we obtain

Zi

Z0
5

ln~b/a!

p F11 j
4

p2 kag/a

22 jka
ln~b/a!

p
@C11C212 ln~4a/g!#G .

~2.33!

In this result we suppressed the superscript (e), since the
odd part of the impedance is negligible. Numerical stu
shows thatC11C2 can be replaced by ln(b/a21)21.78 for
the range ofb/a from 1 to 3.

C. Numerical results

Formulas for numerical computation of the impedance
an annular slot in the inner conductor of coaxial structure
obtained. The even part of the impedance is calculated u
Eq. ~2.15! and the odd part is calculated using Eq.~2.24!.

TABLE I. Im(Zi /Z0) for b/a52 at frequencyka50.03, C15
20.667,C2521.117.

g/a Analytic approximation Numerical result

0.01 0.02976 0.02907
0.03 0.02332 0.02308
0.05 0.02025 0.02022
0.07 0.01823 0.01830
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FIG. 3. Real and imaginary
parts of the admittance of an an
nular cut in a coaxial liner.
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Finally, one sums together the even and the odd part
obtain the coupling impedance. It turns out that for the c
of the annular cut, which we consider in Sec. II, the odd p
is negligible. The same is true even for the slot with fin
azimuthal length as long as the azimuthal length is m
larger than the width of the slot~see Sec. III!. The general
behavior of the real and imaginary parts with respect to
quency is presented in Fig. 2.

D. Discussion

The interesting feature of the annular cut is that in
limit of zero frequency the real part becomes finite, and
imaginary part becomes capacitive. For low frequencies
obtain the leading terms for the real and imaginary pa
analytically, according to Eq.~2.33!. The agreement betwee
the analytic and numerical results is very good. As an
ample, results forb/a52 are presented in Table I. For oth
values ofb/a, the analytic and numerical results are also
good agreement.

The real part of the impedance in the limit of zero fr
quency becomes finite, and is equal to ln(b/a)/p, which
agrees with the result obtained by Palumbo@3#. Its physical
origin is the energy radiated in the TEM mode in the coax
region. With a small hole in the wall, ‘‘image’’ current line
change their profile very little as they avoid the hole, gen
ating almost no radiation. When the pipe is truncated~annu-
lar cut!, the current lines are simply interrupted, leading
the significant radiation in the coaxial region.

For low frequencies, the coupling impedance of the n
row annular cut can be easily presented in terms of
equivalent circuit. Specifically, forg!a, we can write for
the admittance

Y5R211 j vC, ~2.34!

where R is given by Z0ln(b/a)/p, and C is given by
to
e

rt

h

-

e
e
e
s

-

l

r-

r-
n

2ae0@C11C212 ln(4a/g)#, corresponding to the paralle
combination of the resistanceR and the capacitanceC. In
Fig. 3 we present the real and imaginary parts of the adm
tanceY as a function ofka. As one can see, the real part
the admittance is purely 1/R until ka52.405, the cutoff of
the TM01 mode. At this cutoff the singularity corresponds
the fact that power starts to dissipate not just in the coa
region, but also in the pipe region.

III. LONGITUDINAL COUPLING IMPEDANCE
OF A RECTANGULAR SLOT

A. The even part of impedance

1. General analysis

A schematic diagram of our geometry with the rectang
lar slot is shown in Fig. 4. In the pipe region the fields a
given by the source fields plus a general solution of the M
well equations for the cylindrical waveguide. In the coax

FIG. 4. Schematic diagram of a rectangular slot in a thin lin
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region we have a general solution of the Maxwell equatio
for the coaxial waveguide. Due to the asymmetry of t
problem we now haveu dependence, and therefore need
consider both TM and TE modes. For the TM portion of t
modes we have

Ez
~e!~r ,u,z!5E dq~cosqz!f~e!~r ,u!, ~3.1!

where

f~e!~r ,u!5(
n

~cosnu!An
~e!~q!F Jn~kr !

Jn~ka!
,

Fn~kr !

Fn~ka!G .
~3.2!

Here we use the notation where the first part in square br
ets corresponds to the pipe regionr<a, and the second par
corresponds to the coaxial regiona<r<b, with the function
Fn being the solution of the Maxwell equations for the c
axial region for the TM modes@Fn(u)5Yn(u)Jn(kb)
2Jn(u)Yn(kb)#. Note that we consider the inside and ou
side surfaces of the liner both to be atr 5a, since we neglect
the thickness of the liner compared to the wavelength an
the dimensions of the rectangular slot. Therefore, the co
cientAn

(e)(q) is the same for bothr ,a andr .a, sinceEz
(e)

is continuous atr 5a within the hole and on both sides of th
liner surface, whereEz

(e)50. The other corresponding TM
field components can be obtained as

Er
~e!~r ,u,z!52E dq

q~sinqz!

k2

]f~e!~r ,u!

]r

2 j
Z0I 0

2pr
@~sinkz!,0#, ~3.3!

Eu
~e!~r ,u,z!52E dq

q~sinqz!

k2r

]f~e!~r ,u!

]u
, ~3.4!

Z0Hu
~e!~r ,u,z!52 jkE dq~cosqz!

k2

]f~e!~r ,u!

]r
s
e

k-

to
fi-

1
Z0I 0

2pr
@~coskz!,0#, ~3.5!

Z0Hr
~e!~r ,u,z!5 jkE dq~cosqz!

k2r

]f~e!~r ,u!

]u
. ~3.6!

For the TE portion of the modes we similarly have

Z0Hz
~e!~r ,u,z!5E dq~sinqz!c~e!~r ,u!, ~3.7!

where

c~e!~r ,u!52(
n

~sinnu!Bn
~e!F Jn~kr !

Jn8~ka!
,
Gn~kr !

Gn8~ka!G ,
~3.8!

with the functionGn(kr ) being the solution of the Maxwel
equations for the coaxial region for the TE mod
@Gn(u)5Yn(u)Jn8(kb)2Jn(u)Yn8(kb)#. The other TE field
components can be obtained as

Z0Hr
~e!~r ,u,z!5E dqq~cosqz!

k2

]c~e!~r ,u!

]r
, ~3.9!

Z0Hu
~e!~r ,u,z!5E dqq~cosqz!

k2r

]c~e!~r ,u!

]u
, ~3.10!

Eu
~e!~r ,u,z!5 jkE dq~sinqz!

k2

]c~e!~r ,u!

]r
, ~3.11!

Er
~e!~r ,u,z!52 jkE dq~sinqz!

k2r

]c~e!~r ,u!

]u
. ~3.12!

For the general solution, we include both the TM and T
portions of the modes, and write explicitly
Z0Hu
~e!~r ,u,z!52 jk(

n
S E dq~cosqz!~cosnu!An

~e!~q!F Jn8~kr !

kJn~ka!
,

Fn8~kr !

kFn~ka!
G D 1

Z0I 0

2pr
@~coskz!,0#

2(
n

S E dq
qn

rk2 ~cosqz!~cosnu!Bn
~e!~q!F Jn~kr !

Jn8~ka!
,
Gn~kr !

Gn8~ka!G D , ~3.13!

Eu
~e!~r ,u,z!5(

n
S E dq

qn

rk2 ~sinqz!~sinnu!An
~e!~q!F Jn~kr !

Jn~ka!
,

Fn~kr !

Fn~ka!G D
2 jk(

n
S E dq~sinqz!~sinnu!Bn

~e!~q!F Jn8~kr !

kJn8~ka!
,

Gn8~kr !

kGn8~ka!G D . ~3.14!
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We can expressAn
(e)(q) in terms of theEz

(e)(a,u,z) by using
the even part of Eq.~1.8! to obtain

An
~e!~q!5

1

4p2a E dS~cosqz!~cosnu!Ez
~e!~a,u,z!.

~3.15!

Similarly we expressBn
(e)(q) in terms of Ez

(e)(a,u,z) and
Eu

(e)(a,u,z) by inverting Eq.~3.14! at r 5a. Specifically

qn

ak2 An
~e!~q!2 jk

Bn
~e!~q!

k
5

1

4p2a E dS~sinqz!~sinnu!

3Eu
~e!~a,u,z!. ~3.16!

Therefore we find for the coefficientBn
(e)(q)

Bn
~e!~q!5 j

k

k

1

4p2a E dSF ~sinqz!~sinnu!Eu
~e!~a,u,z!

2
qn

ak2 ~cosqz!~cosnu!Ez
~e!~a,u,z!G . ~3.17!

The next step is to match the tangential magnetic fi
components within the hole. The continuity ofHz

(e) andHu
(e)

in the hole atr 5a leads to

E dS8Eu8
~e!

~a,u8,z8!K22
~e!1E dS8Ez8

~e!
~a,u8,z8!K21

~e!50,

~3.18!

E dS8Ez8
~e!

~a,u8,z8!K11
~e!1E dS8Eu8

~e!
~a,u8,z8!K12

~e!

5aZ0I 02p~coskz!, ~3.19!

where

K11
~e!5a(

n
E dq~cosqz!~cosqz8!~cosnu!~cosnu8!k11,

~3.20!

K12
~e!5K21

~e!

5a(
n
E dq~cosqz!~sinqz8!~sinnu8!~cosnu!k12,

~3.21!
d

K22
~e!5a(

n
E dq~sinqz!~sinqz8!~sinnu!~sinnu8!k22,

~3.22!

with

k115 jkaPn~q!2 j
q2n2

k2ka
Qn~q!, ~3.23!

k125k215 j
qn

k
Qn~q!, ~3.24!

k2252 j
k2a

k
Qn~q!. ~3.25!

Here the functionsPn(q) and Qn(q) are given by the fol-
lowing expressions

Pn~q!5F Jn8~ka!

kaJn~ka!
2

Fn8~ka!

kaFn~ka!
G , ~3.26!

Qn~q!5F Jn~ka!

kaJn8~ka!
2

Gn~ka!

kaGn8~ka!G , ~3.27!

wherek25k22q2.
We now treatPn(q) andQn(q) as functions ofka with

kb5(b/a)ka and express these functions as a sum over
zeros of the respective denominators. The detailed expan
of the functionsPn(q) andQn(q) in terms of algebraic se
ries is given in Appendix B. The resulting expressions
K11

(e) , K12
(e) , K21

(e) , andK22
(e) , in Eqs.~3.20!–~3.22! can then

be integrated overq by means of the residue theorem.

2. The variational form

From Eq.~1.9! the even part of the impedance is

Zi
~e!

Z0
5

21

2paZ0I 0
E dSEz

~e!~a,u,z!~coskz!. ~3.28!

Using Eqs.~3.18! and ~3.19! we can form
t
e

Z0

Zi
~e! 52S E E dS8dS@2Eu8

~e!
~a,u8,z8!Ez

~e!~a,u,z!K12
~e!1Ez8

~e!
~a,u8,z8!Ez

~e!~a,u,z!K11
~e!

1Eu8
~e!

~a,u8,z8!Eu
~e!~a,u,z!K22

~e!# D Y S E dSEz
~e!~a,u,z!~coskz!2D , ~3.29!

a form independent of the normalization of the fields. If we ask that the numerator of Eq.~3.29! be a minimum with respec
to the variations ofEz

(e) and Eu
(e) , subject to the constraint*dSEz

(e)(a,u,z)coskz51, we can use the method of Lagrang
multipliers to form
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J5E E dS8dS@2Eu8
~e!

~a,u8,z8!Ez
~e!~a,u,z!K12

~e!

1Ez8
~e!

~a,u8,z8!Ez
~e!~a,u,z!K11

~e!1Eu8
~e!

~a,u8,z8!Eu
~e!

3~a,u,z!K22
~e!#22lE dSEz

~e!~a,u,z!~coskz!

5minimum, ~3.30!

and require thatdJ50 for variations indEz
(e) anddEu

(e) . By
doing so we reproduce Eqs.~3.18! and ~3.19! and confirm
that Eq.~3.29! is a variational form for the impedance.

We now proceed from the variational statement of
problem to the solution. The first step is the expansion of
unknown fieldsEz

(e) and Eu
(e) in terms of a complete set o

functions characteristic of the hole. Using the expansion

Ez
~e!~a,u,z!5( asus~u,z! ~3.31!

and

Eu
~e!~a,u,z!5( bsvs~u,z!, ~3.32!

whereus andvs are each an orthonormal set of functions
the hole, we then have

J5( asas8Lss8
~e!

12asbs8Mss8
~e!

1bsbs8Nss8
~e!
l

i-
In

-

.

e
e

22l( asPs
~e! , ~3.33!

with L (e), M (e), N(e), andP(e) defined in Appendix A. The
vanishing of the partial derivative with respect toa gives

( as8Lss8
~e!

1bs8Mss8
~e!

5lPs
~e! . ~3.34!

The vanishing of the partial derivative with respect tob gives

( as8Mss8
~e!

1bs8Nss8
~e!

50. ~3.35!

We solve these two matrix equations to obtain

a5lH ~e!21
P~e!, ~3.36!

where the matrixH (e) in Eq. ~3.36! is defined as

H ~e!5L ~e!2M ~e!N~e!21
M̃ ~e!. ~3.37!

Therefore we can write

Z0

Zi
~e! 5

2l

lP~e!H ~e!21
P~e!

52
1

P~e!H ~e!21
P~e!

, ~3.38!

independent of the normalization parameterl. After evalua-
tion of the integrals~see Appendix A!, we obtain the final
form for the even part of the impedance
Zi
~e!

Z0
5 (

nn8mm8
F2

64B2k2a2 sin2@~ka/2!g/a#

mm8p2

sin~mp/2!sin~m8p/2!cos~n8p/2!cos~np/2!

@~np/g/a!22k2a2#@~n8p/g/a!22k2a2#
~H ~e!!nn8mm8

21 G , ~3.39!
with m,m8 being odd, andn,n8 being even. The fina
forms of the quantitiesL (e), M (e), andN(e), needed to evalu-
ate the matrixH (e) in Eq. ~3.39!, are given in Appendix A.

B. The odd part of impedance

1. General analysis

We now consider the portion of the problem whereEz
(o)

is odd in z. We perform expansion for the fields sim
lar to those for the even portion of the problem.
the expressions for the fields in Eqs.~3.1!–~3.14! we re-
place coskz by 2 j (sinkz), sinkz by j (coskz), cosqz by
2 j (sinqz), and sinqz by j (cosqz) as governed by the
form of Eq. ~1.5!. In the expressions for the coeffi
cients in Eqs.~3.15!–~3.17! we replace cosqz8 by j (sinqz8)
and sinqz8 by 2 j (cosqz8) as governed by the form of Eq
~1.8!.

The continuity ofHz
(o) andHu

(o) in the hole atr 5a leads
to the following integral equations
E dS8Eu8
~o!

~a,u8,z8!K22
~o!1E dS8Ez8

~o!
~a,u8,z8!K21

~o!50,

~3.40!

E dS8Ez8
~o!

~a,u8,z8!K11
~o!1E dS8Eu8

~o!
~a,u8,z8!K12

~o!

5aZ0I 02p~2 j sinkz!, ~3.41!

where

K11
~o!5a(

n
E dq~sinqz!~sinqz8!~cosnu!~cosnu8!k11,

~3.42!

K12
~o!5K21

~o!

52a(
n
E dq~sinqz!~cosqz8!~cosnu!~sinnu8!k12,

~3.43!
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K22
~o!5a(

n
E dq~cosqz!~cosqz8!~sinnu!~sinnu8!k22,

~3.44!

with ki j given by Eqs.~3.23!–~3.25!. In Eqs.~3.20!–~3.22!
we use both sets of replacements outlined at the start of
section to obtain Eqs.~3.40!–~3.44!.
c
of

e

e
-

e

is

2. The variational form for the odd part

From Eq.~1.9! the odd part of the impedance is

Zi
~o!

Z0
5

2 j

2paZ0I 0
E dSEz

~o!~a,u,z!~sinkz!. ~3.45!

Using Eqs.~3.40! and Eq.~3.41! we can form
Z0

Zi
~o! 52S E E dS8dS@2Eu8

~o!
~a,u8,z8!Ez

~o!~a,u,z!K12
~o!1Ez8

~o!
~a,u8,z8!Ez

~o!~a,u,z!K11
~o!

1Eu8
~o!

~a,u8,z8!Eu
~o!~a,u,z!K22

~o!# D Y S E dSEz
~o!~a,u,z!~sinkz!2D . ~3.46!
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If we require that the numerator of Eq.~3.46! be a minimum
with respect to the variations ofEz

(o) andEu
(o) , subject to the

constraint*dSEz
(o)(a,u,z)(sinkz)51, as we did for the even

part, we find that Eq.~3.46! is the variational form for the
odd part of the impedance. After expandingEz

(o)(a,u,z) and
Eu

(o)(a,u,z) in terms of a complete set of functions chara
teristic of the hole, we ultimately obtain for the odd part
the impedance

Z0

Zi
~o! 52

1

P~o!H ~o!21
P~o!

, ~3.47!

where the matrixH (o) in Eq. ~3.47! is defined as

H ~o!5L ~o!2M ~o!N~o!21
M̃ ~o!. ~3.48!

After evaluation of the integrals~see Appendix A!, we
obtain the final form for calculation of the odd part of th
impedance

Zi
~o!

Z0
5 (

nn8mm8
F264B2k2a2cos2@~ka/2!g/a#

mm8p2

3
sin~mp/2!sin~m8p/2!sin~np/2!sin~n8p/2!

†~np/~g/a…!22k2a2#†~n8p/~g/a!…22k2a2#

3~H ~o!!nn8mm8
21 G , ~3.49!

with m,m8,n,n8 being odd. The final expressions for th
quantitiesL (o), M (o), andN(o), needed to evaluate the ma
trix H (o) in Eq. ~3.49!, are given in Appendix A.

TABLE II. Im(Z) ~units mV! for a square hole with 4 mm edg
length at frequency 1 GHz,a516 mm.

ka b/a51.2 b/a51.3125 b/a51.5

0.3351 6.46 6.57 6.60
-

C. Numerical results and discussions

Formulas for direct numerical computation of the impe
ance of a rectangular slot have been obtained. The even
of the impedance is calculated using Eq.~3.39!. The odd part
of the impedance is calculated using Eq.~3.49!. Finally, the
sum of the even and odd parts yields the result for the c
pling impedance.

To obtain suitable numerical accuracy we need a 535
matrix for the summation overn,n8, and a 333 matrix for
the summation overm,m8. These matrix sizes are used
obtain the convergent results in bothn,n8 and m,m8 in
Tables II and III. We estimate the accuracy of the numb
listed to be around 3%. To present the frequency behavio
the impedance in Figs. 5–7 a 535 matrix is used for the
summation overn,n8, but onlym5m851 is taken for con-
venience. From a few test cases with terms up tom5m855,
we estimate that the results for onlym5m851 are approxi-
mately 6% low.

1. Transverse rectangular slots

We can use Eqs.~3.39! and ~3.49! to study the coupling
impedance of a rectangular slot of specific geometry. As
example, and to test our formulas, we present here a num
cal study of the impedance of rectangular slots of differ
azimuthal length. In order to compare our results with tho
presented by Filtz and Scholz@4# we also choose the param
eters of the LHC design.

In Figs. 5 and 6, the frequency dependence of both
real and imaginary parts of the coupling impedance of
transverse rectangular slot is presented, with an ang
length 180 and 350 degrees, respectively. As expected,
behavior with respect to frequency strongly differs from t
one of slots with the small angular length, even for relative

TABLE III. Re(Z) ~unitsmV! for a square hole with 4 mm edg
length at frequency 1 GHz,a516 mm.

Re(Z) b/a51.2 b/a51.3125 b/a51.5

Our result 7.54 5.21 3.53
Scholz’s result@6# '7.7 '5.3 '3.8
Analytic result, using@9# 1.64 1.1 0.74
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FIG. 5. Real and imaginary
parts of the coupling impedanc
of transverse rectangular slot wit
the azimuthal lengtha[2B equal
to 180°.
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low frequencies. When we increase the azimuthal length
the slot, the behavior of the impedance becomes simila
the limit when the azimuthal length is equal to 2p ~which
corresponds to the annular cut in the inner pipe considere
Sec. II!, except for very low frequencies. In the limit of th
annular cut, for low frequencies, the real part becomes fin
and the imaginary part becomes capacitive. The deriva
and detailed explanation of this fact was given in Sec. II

The general behavior of the impedance agrees with
results of Filtz and Scholz, even though there is some s
between our results and theirs. They used a similar fi
matching technique, but their calculations of the impeda
were performed without using a variational form, presu
ably requiring large matrices and considerable CPU tim
Our approach, which uses a variational form, requires o
modest size matrices. The simplicity of the calculation
lowed us to perform the present numerical study us
MATHEMATICA @5#.
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2. Small rectangular hole

In order to check our results with the theory developed
small holes and with the calculation of Scholz@6#, a numeri-
cal study is performed for a liner radiusa516 mm for a
small square hole with the edge length equal to 4 mm,
parameters used by Scholz. The frequency dependenc
both the real and imaginary parts of the coupling impeda
is presented in Fig. 7. Similar plots were obtained by Sch
@6#, but the peaks he obtains for the cutoffs of the modes
the coaxial region are in error@7#.

a. Imaginary part. In the well known Bethe small hole
approximation the imaginary part of the impedance bel
cutoff is given by

Z~v!5 jZ0

v

c0

am1ae

4p2a2 , ~3.50!
e
h

FIG. 6. Real and imaginary
parts of the coupling impedanc
of transverse rectangular slot wit
the azimuthal lengtha[2B equal
to 350°.



e
f
e

3594 56ALEXEI V. FEDOTOV AND ROBERT L. GLUCKSTERN
FIG. 7. Frequency dependenc
of the imaginary and real parts o
the impedance for a small squar
hole ~for a516 mm it corre-
sponds tow5g54 mm!.
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with Z05120p ~units V!, a the inner pipe radius,c0 the
velocity of light, v the angular frequency,am and ae the
magnetic susceptibility and electric polarizabilty, respe
tively. For the rectangular holeam andae are given approxi-
mately, forw/g<1, by @8#:

am5
p

16
w2gS 110.3577

w

g
20.0356

w2

g2 D , ~3.51!

ae5
2p

16
w2gS 120.5663

w

g
10.1398

w2

g2 D , ~3.52!

wherew andg are the width and length of the slot, respe
tively. For the frequencyk051 GHz and dimensions of th
square hole given above, one obtains

Z5 j 0.0073 V. ~3.53!

At this point we note that in the problem that we consid
there is in addition the wall of the outer pipe at radi
b521 mm, with b2a55 mm. Obviously, with such a ge
ometry the result is expected to be influenced by the o
metallic wall. In the presence of the outer wall, one c
imagine an image dipole that creates the field in the coa
region in the same direction as the field in the pipe regi
reducing the coupling impedance.

Therefore, because of the outer wall, we expect the re
to be less than the one given by Eq.~3.53!, and to approach
this result when the distanceb2a is increased. The study o
the impedance behavior with respect to the distanceb2a is
given in Table II. It suggests the expected asymptotic
crease in the imaginary part of the impedance. The deta
investigation of the effect mentioned above lies outside
scope of the present paper.

The numerical results obtained are in reasonably g
agreement with the expected values. Results obtained
Scholz@6# for the frequency 1 GHz are a few percent high
and atb/a52 the numerical value obtained by Scholz
already 10% above the result given by Eq.~3.53!.
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b. Real part. Recently, the analytic formula for the rea
part of the impedance of a circular hole in a coaxial struct
was derived by Palumboet al. @9#. Comparison of our results
with those of Palumboet al. @9#, at the frequency
ka50.3351~1 GHz!, with a516 mm, is given in Table III.
Note that some difference is expected due to the fact
their formula is given for a circular hole, and we approx
mate our rectangle by a circle of the same area whose ra
is r 5A16/p mm. For low frequencies our numerical resu
show that the real part of the impedance in a coaxial li
varies ask2 in contrast to thek4 behavior for the radiation of
a hole into free space. The real part of the impedance
decreasess as 1/ln(b/a). Similar behavior was predicted b
Palumboet al. @9#. However, our results in Table III and
those of Scholz@6# are significantly larger than those ob
tained by using the formula derived by Palumboet al. @9#.

Based on our analysis we can perform the calculation
low frequencies analytically. For frequencies below all c
offs, we consider only the TEM mode and obtain

ReS Z

Z0
D5

k2

64p3a4 ln~b/a!
~c21x2!, ~3.54!

wherec52am andx522ae . The available static approxi
mations foram andae , as well as the expressions with th
frequency corrections@1,10#, can be now used to estimate th
real part of the impedance for holes of different shape. N
that the value of the impedance obtained in this way will
a few percent higher than the real one due to the fact
expressions foram and ae are given in the literature for a
hole in a plane metallic wall~without the outer wall which is
present in the coaxial structure!. In the discussion following
Eq. ~3.53! we noted that the fields in and near the hole a
modified due to the presence of the outer wall. This can
taken into account by introducing ab/a correction factor in
am andae , but it should only be seen as a vehicle to use E
~3.54! when the dimensions of the hole are not negligib
with respect to the distanceb2a. As an example, in Table
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IV we present theb/a dependence ofam andae , based on
numerical results for the square hole with the edge len
equal to 4 mm, and radius of the linera equal to 16 mm. For
b/a→` the values foram and ae are in good agreemen
with the results available in the literature for a square hole
a metallic plate. For the circular hole, the above express
becomes

ReS Z

Z0
D5

5k2r 6

36p3a4ln~b/a!
, ~3.55!

where r is the radius of the hole. The expression given
Eq. ~3.55! is a factor of 5 larger than the one obtained
Palumboet al. @9#. If we were to multiply the results in the
last row of Table III by 5, they would correspond to E
~3.55! and would now be in good agreement with the n
merical calculations.

IV. SUMMARY

In Sec. II we present the analysis of the calculation of
coupling impedance of an annular cut in a coaxial liner
negligible wall thickness. We obtain equations for calcul
ing the even and odd parts of the impedance, expres
in variational form. The use of the variational metho
makes numerical study fast and accurate. In order to ch
our technique, an analytic calculation is performed for lo
frequencies and compared with the numerical results.
agreement between the analytic and numerical results is
good.

In Sec. III we present a detailed analysis of the calculat
of the coupling impedance of a rectangular slot in a coa
liner of negligible wall thickness over a wide frequen
range. We obtain equations for calculating the even and
parts of the impedance, expressed in variational form. All
integrals in the final expressions given by Eqs.~3.39! and
~3.49!, are already performed, so that it is only necessary
specify the geometrical parameters of interest. The formu
obtained can be used for numerical study of the coup

TABLE IV. The electric polarizability and magnetic susceptib
ity of a square hole (g5w).

b/a51.2 b/a51.3125 b/a51.5 b/a→`

2ae /w3 0.0998 0.1010 0.1015 0.1082
am /w3 0.2305 0.2339 0.2351 0.2532
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impedance of transverse and longitudinal rectangular slot
any size as well as different coaxial configurations. Nume
cal study for a long narrow transverse slot and a small re
angular hole are presented at different frequencies. The
merical results obtained for both the imaginary and the r
part correspond to the expected ones for frequencies be
and above cutoff. For the small rectangular hole, the beh
ior of the imaginary part is not totally consistent with th
result of Scholz@6#. The real part of the impedance for th
frequencies below cutoff is higher than that expected fr
the formula obtained by Palumboet al. @9#. A discussion of
these differences is given in Sec. III C.
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APPENDIX A: EVALUATION OF INTEGRALS

In this section we present the calculation of the integr
and give the final form of expressions for the quantitiesL (e),
M (e), N(e), L (o), M (o), and N(o). With these expressions
Eqs.~3.39! and~3.49! can be used for direct numerical com
putation of the even and odd parts of the impedance, res
tively.

1. Expressions for the numerical calculations of the even part

The expansion forms in Eqs.~3.31!, ~3.32! should be
based on the specific characteristics of the problem ge
etry. Using the symmetry argument given in theIntroduction
and the correct boundary conditions at the edges of the h
we choose

Ez
~e!~a,u,z!5(

mn
amn

~e!cosS np

2A
zD cosS mp

2B
u D ~A1!

and

Eu
~e!~a,u,z!5(

mn
bmn

~e!sinS np

2A
zD sinS mp

2B
u D , ~A2!

with m being odd, andn being even. In Eqs.~A1!–~A2!,
2A[g is the length of the hole in the longitudinal directio
z, and 2B is the angular length of the hole in the azimuth
directionu. Then the matricesL (e), M (e), N(e) in Eq. ~3.37!
will be given by the following expressions
L ~e!5E
2B

B E
2B

B E
2A

A E
2A

A

dudu8dzdz8cosS np

2A
zD cosS mp

2B
u D cosS n8p

2A
z8D cosS m8p

2B
u8D

3(
n
E

2`

`

dq~cosqz!~cosqz8!~cosnu!~cosnu8!k11, ~A3!

M ~e!5E
2B

B E
2B

B E
2A

A E
2A

A

dudu8dzdz8cosS np

2A
zD cosS mp

2B
u D sinS n8p

2A
z8D sinS m8p

2B
u8D

3(
n
E

2`

`

dq~cosqz!~sinqz8!~cosnu!~sinnu8!k12, ~A4!



ix

3596 56ALEXEI V. FEDOTOV AND ROBERT L. GLUCKSTERN
N~e!5E
2B

B E
2B

B E
2A

A E
2A

A

dudu8dzdz8sinS np

2A
zD sinS mp

2B
u D sinS n8p

2A
z8D sinS m8p

2B
u8D

3(
n
E

2`

`

dq~sinqz!~sinqz8!~sinnu!~sinnu8!k22, ~A5!

whereki j are given by Eqs.~3.23!–~3.25!. The matrixP(e) in Eq. ~3.36! is given by

P~e!5E
2B

B

du cosS mp

2B
u D E

2A

A

dz cosS np

2A
zD ~coskz!. ~A6!

After evalution of the integrals we obtain the final form for the quantitiesL (e), M (e), andN(e), needed to evaluate the matr
H (e) in Eq. ~3.39!. They are given by the following expressions

L0
~e!5

16B2ka sin~mp/2!sin~m8p/2!

mm8p2 F2(
s51

Gb0s

Leven2
1

2 ln~b/a!
Gk

Leven1(
s51

a0sGc0s

LevenG , n50, ~A7!

Ln
~e!5(

n
FL~m,m8,n,B!kaH FnS ~b/a!2n

12~b/a!2nDGk
Leven2(

s51
Gbns

Leven1(
s51

ansGcns

LevenG
1

n2

k2a2 F (
s51

~pns8 !2

~pns8 !22n2 @k2a2Gk
Leven2~bns8 !2G

b
ns8

Leven#
1

k2a22~bns8 !2

1(
s51

bns

k2a22~cns8 !2 @k2a2Gk
Leven2~cns8 !2G

c
ns8

Leven#G J , nÞ0, ~A8!

M0
~e!5N0

~e!50, n50, ~A9!

Mn
~e!5(

n
FM~m,m8,n,B!F (

s51

~pns8 !2

~pns8 !22n2 G
b

ns8

Meven1(
s51

bnsGc
ns8

MevenG , nÞ0, ~A10!

Nn
~e!5(

n
FN~m,m8,n,B!F (

s51

~pns8 !2

~pns8 !22n2 G
b

ns8

Neven1(
s51

bnsGc
ns8

NevenG , nÞ0, ~A11!
,

gh

l-

io
:

where explicit expressions forFL, FM, FN, GL, GM andGN

are given in Eqs.~A40!–~A42! and~A30!–~A32!. The coef-
ficients ans , bns and the quantitiesbns , cns , bns8 , cns8 are
given in Eqs.~A23!–~A28!.

Note that in Eq.~A8! terms withGk
Leven cancel each other

which corresponds to the fact that only the mode withn50
can propagate in a coaxial region with the speed of li
~TEM mode!. Therefore, in order not to lose accuracy, term
with Gk

Leven (nÞ0) should be excluded from numerical ca
culations.

2. Expressions for the numerical calculations of the odd part

For the odd problem we choose the following expans
of the fields:
t
s

n

Ez
~o!~a,u,z!5(

mn
amn

~o!sinS np

2A
zD cosS mp

2B
u D ~A12!

and

Eu
~o!~a,u,z!5(

mn
bmn

~o!cosS np

2A
zD sinS mp

2B
u D , ~A13!

with m andn being odd. In Eqs.~A12! and~A13!, 2A[g is
the length of the hole in the longitudinal directionz, and 2B
is the angular length of the hole in the azimuthal directionu,
as was true for the even part. Then the matricesL (o), M (o),
N(o) in Eq. ~3.48! will be given by the following expressions
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L ~o!5E
2B

B E
2B

B E
2A

A E
2A

A

dudu8dzdz8sinS np

2A
zD cosS mp

2B
u D sinS n8p

2A
z8D cosS m8p

2B
u8D

3(
n
E

2`

`

dq~sinqz!~sinqz8!~cosnu!~cosnu8!k11, ~A14!

M ~o!52E
2B

B E
2B

B E
2A

A E
2A

A

dudu8dzdz8sinS np

2A
zD cosS mp

2B
u D cosS n8p

2A
z8D sinS m8p

2B
u8D

3(
n
E

2`

`

dq~sinqz!~cosqz8!~cosnu!~sinnu8!k12, ~A15!

N~o!5E
2B

B E
2B

B E
2A

A E
2A

A

dudu8dzdz8cosS np

2A
zD sinS mp

2B
u D cosS n8p

2A
z8D sinS m8p

2B
u8D

3(
n
E

2`

`

dq~cosqz!~cosqz8!~sinnu!~sinnu8!k22, ~A16!

whereki j are given by Eqs.~3.23!–~3.25!. The matrixP(o) in Eq. ~3.47! is given by

P~o!5E
2B

B

du cosS mp

2B
u D E

2A

A

dz sinS np

2A
zD ~sinkz!. ~A17!

After evaluation of the integrals for the quantitiesL (o), M (o), andN(o) we obtain

L0
~o!5

16B2kasin~mp/2!sin~m8p/2!

mm8p2 F2(
s51

Gb0s

Lodd2
1

2 ln~b/a!
Gk

Lodd1(
s51

a0sGc0s

LoddG , n50, ~A18!

Ln
~o!5(

n
FL~m,m8,n,B!kaH FnS ~b/a!2n

12~b/a!2nDGk
Lodd2(

s51
Gbns

Lodd1(
s51

ansGcns

LoddG
1

n2

k2a2 F (
s51

~pns8 !2

~pns8 !22n2 @k2a2Gk
Lodd2~bns8 !2G

b
ns8

Lodd#
1

k2a22~bns8 !2

1(
s51

bns

k2a22~cns8 !2 @k2a2Gk
Lodd2~cns8 !2G

c
ns8

Lodd#G J , nÞ0, ~A19!

M0
~o!5N0

~o!50, n50, ~A20!

Mn
~o!5(

n
FM~m,m8,n,B!F (

s51

~pns8 !2

~pns8 !22n2 G
b

ns8

Modd1(
s51

bnsGc
ns8

ModdG , nÞ0, ~A21!

Nn
~o!5(

n
FN~m,m8,n,B!F (

s51

~pns8 !2

~pns8 !22n2 G
b

ns8

Nodd1(
s51

bnsGc
ns8

NoddG , nÞ0, ~A22!
where explicit expressions forFL, FM, FN, GL, GM, and
GN are given in Eqs.~A40!–~A42! and ~A33!–~A35!. In
Eqs.~A7!–~A11! and~A18!–~A22!, the coefficientsans and
bns are given by

ans5
Jn

2~snsb/a!

Jn
2~snsb/a!2Jn

2~sns!
, ~A23!

bns5@Jn8~sns8 b/a!#2/†@Jn8~sns8 b/a!#2@n2/~sns8 !221#

2@Jn8~sns8 !#2@n2/~sns8 b/a!221#‡, ~A24!
and the quantitiesbns , cns , bns8 , cns8 are given by

bns
2 5k2a22pns

2 , Jn~pns!50, ~A25!

cns
2 5k2a22sns

2 , Fn~sns!50, sn050, ~A26!

~bns8 !25k2a22~pns8 !2, Jn8~pns8 !50, ~A27!

~cns8 !25k2a22~sns8 !2, Gn8~sns8 !50, sn08 50.
~A28!
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Note that, as for the even case, terms withGk
Lodd should be

excluded from Eq.~A19! from numerical calculations.

3. General definitions

Expressions for the evaluation of the matricesG in Eqs.
~A7!–~A11! and ~A18!–~A22! are obtained by performing
integrals overz, z8, andq.

For the even part, for example, we intergrate overz and
z8 first. The remaining integral overq can be expressed i
terms of the following integral:

I 15E
2`

`

dq
q2sin2qA

@~np/2A!22q2#@~n8p/2A!22q2#

1

~q2a22ws
2!

.

~A29!

The contour goes below any poles on the negative realq axis
and above any poles on the positive realq axis in order to
satisfy the outgoing wave boundary condition for the fie
generated by the obstacle. For the terms withn not equal to
n8 the only contribution comes from simple poles
q56ws /a. For the terms withn equal n8 an additional
contribution comes from the second order poles
q56np/2A. The resulting expressions for the elements
the matricesGLeven, GNeven, andGMeven in Eqs. ~A7!–~A11!
are the following:
GLeven:

Sd0, n5n850,

Sd, n5n8Þ0, ~A30!

wsS cos
np

2 D S cos
n8p

2 DSnond, nÞn8;

GMeven:

S np

g/aD n

ka
Sd, n5n8Þ0,

~A31!

wsS n8p

g/a D n

ka S cos
np

2 D S cos
n8p

2 DSnond, nÞn8;

GNeven:

1

ka
SNd, n5n8Þ0,

~A32!

1

ka S n8p

g/a D S np

g/aD S cos
np

2 D S cos
n8p

2 D ~ws
22k2a2!

ws
Snond,

nÞn8;

with n,n8 being even. Here the superscriptsd and nond cor-
respond to diagonal and non-diagonal elements.

For the odd part of the impedance, the resulting expr
sions for the elements of the matricesGLodd, GNodd, and
GModd in Eqs.~A18!–~A22! are the following:
s

t
f

s-

GLodd:

Sd, n5n8Þ0,
~A33!

wsS sin
np

2 D S sin
n8p

2 DSnond, nÞn8;

GModd:

S 2
np

g/aD n

ka
Sd, n5n8Þ0,

~A34!

2wsS n8p

g/a D n

ka S sin
np

2 D S sin
n8p

2 DSnond, nÞn8,

GNodd:

1

ka
SNd, n5n8Þ0,

~A35!

1

ka S n8p

g/a D S np

g/aD S sin
np

2 D S sin
n8p

2 D ~ws
22k2a2!

ws
Snond,

nÞn8,

with n,n8 being odd.
In the expressions above we use the following notatio

Sd054pws

16exp~2 jwsg/a!

$@np/~g/a!#22ws
2%2 14p

jg/a

@np/~g/a!#22ws
2 ,

~A36!

Sd54pws

16exp~2 jwsg/a!

$@np/~g/a!#22ws
2%2 12p

jg/a

@np/~g/a!#22ws
2 ,

~A37!

SNd54pS np

g/aD 2 ~ws
22k2a2!

ws

16exp~2 jwsg/a!

$@np/~g/a!#22ws
2%2

12p
jg/a$@np/~g/a!#22k2a2%

@np/~g/a!#22ws
2 , ~A38!

Snond54p
16exp~2 jwsg/a!

$@np/~g/a!#22ws
2%$@n8p/~g/a!#22ws

2%
.

~A39!

In Eqs. ~A36!–~A39!, the 6 sign corresponds to the eve
and odd parts, respectively.

Note that, in Eqs.~A30!–~A39!, we use general notation
ws , which should be replaced byka, bns , cns , bns8 , or cns8 ,
as shown by the subscript of the matrixG in Eqs. ~A7!–
~A11! and~A18!–~A22!. FunctionsFL, FM, andFN in Eqs.
~A7!–~A11! and~A18!–~A22! are obtained from the integra
tion over u and u8. These functions are given b
FL(m,m8,n,B):
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B2,
mp

2B
5

m8p

2B
5n,

2B~m8p/2B!sin~m8p/2!cosnB

~m8p/2B!22n2 ,
mp

2B
5nÞ

m8p

2B
,
~A40!

2B~mp/2B!sin~mp/2!cosnB

~mp/2B!22n2 ,
mp

2B
Þn5

m8p

2B

4~mp/2B!~m8p/2B!sin~mp/2!sin~m8p/2!cos2nB

@~mp/2B!22n2#)@~m8p/2B!22n2#
,

mp

2B
ÞnÞ

m8p

2B
;

FM(m,m8,n,B):

B2,
mp

2B
5

m8p

2B
5n,

2Bn sin~m8p/2!cosnB

~m8p/2B!22n2 ,
mp

2B
5nÞ

m8p

2B
,

2B~mp/2B!sin~mp/2!cosnB

~mp/2B!22n2 ,
mp

2B
Þn5

m8p

2B
,
~A41!

4n~mp/2B!sin~mp/2!sin~m8p/2!cos2nB

@~mp/2B!22n2#@~m8p/2B!22n2#
,

mp

2B
ÞnÞ

m8p

2B
;

FN(m,m8,n,B):

B2,
mp

2B
5

m8p

2B
5n,

2Bn sin~m8p/2!cosnB

~m8p/2B!22n2 ,
mp

2B
5nÞ

m8p

2B
,

~A42!

2Bn sin~mp/2!cosnB

~mp/2B!22n2 ,
mp

2B
Þn5

m8p

2B
,

4n2 sin~mp/2!sin~m8p/2!cos2 nB

@~mp/2B!22n2#@~m8p/2B!22n2#
,

mp

2B
ÞnÞ

m8p

2B
.

APPENDIX B: EXPANSION IN TERMS OF SERIES
OF ZEROS OF BESSEL FUNCTIONS

In this section we present expressions for the expansio
Pn(q) andQn(q), which are present in the integral equatio
in terms of algebraic series of zeros of Bessel functions.

1. Expansion ofPn„q…

The quantityPn(q) is given by the following combination
of Bessel functions and their derivatives,

Pn~q!5F Jn8~ka!

kaJn~ka!
2

Fn8~ka!

kaFn~ka!
G , ~B1!
of
,

whereFn(ka) is given by

Fn~ka!5Yn~ka!Jn~kb!2Jn~ka!Yn~kb!, ~B2!

with k25k22q2. For the first term we use the relation give
in @11#:

G~n11!~ka/2!2nJn~ka!5)
s51

` S 12
~ka!2

pns
2 D . ~B3!

Taking the logarithmic derivatives of both sides, we obta

Jn8~ka!

kaJn~ka!
5

n

~ka!2 22(
s

1

pns
2 2~ka!2 , ~B4!

and, using the definition of the propagation constantk, we
obtain

Jn8~ka!

kaJn~ka!
5

n

~ka!2 22(
s

1

q2a22bns
2 . ~B5!

For the second term in Eq.~B1!, the singularity atka5sns ,
with Fn(sns)50, gives us

Fn8~ka!

kaFn~ka!
52(

s51

`
ans

~ka!22sns
2 , ~B6!

whereans is given by the following expression:

ans5
Jn

2~snsb/a!

Jn
2~snsb/a!2Jn

2~sns!
. ~B7!

There is also a singularity atka50. For then50 term, we
have the additional terms

F08~ka!

kaF0~ka!
52

1

~ka!2 ln~b/a!
, ~B8!

and fornÞ0 we have the additional terms

Fn8~ka!

kaFn~ka!
5

n

~ka!2 Fb2n1a2n

a2n2b2nG . ~B9!

We can then we rewrite Eq.~B1! as

Pn~q!52
2n

~ka!2 F b2n

a2n2b2nG1
1

~ka!2

1

ln~b/a!
dn0

22(
s51

`
1

~qa!22bns
2 12(

s51

`
ans

~qa!22cns
2 ,

~B10!

where

bns
2 5k2a22pns

2 , Jn~pns!50, ~B11!

cns
2 5k2a22sns

2 , Fn~sns!50, sn050. ~B12!

We rewrite Eq.~B10! as
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Pn~q!55 22(
s51

`
1

q2a22b0s
2 2

1

ln~b/a!

1

q2a22k2a2 12(
s51

`
a0s

q2a22c0s
2 , n50

22(
s51

`
1

q2a22bns
2 2

b2n

b2n2a2n

2n

q2a22k2a2 12(
s51

`
ans

q2a22cns
2 , nÞ0.

~B13!

At this point we note that after combining expressions forPn(q) andQn(q) in the expression fork11 in Eq. ~3.23!, terms for
nÞ0, with singularity atq5k, cancel each other. This corresponds to the fact that only the mode withn50 can propagate in
the coaxial region with the speed of light~TEM mode!.

2. Expansion ofQn„q…

The quantityQn(q) is given by the following combination of Bessel functions and its derivatives

Qn~q!5F Jn~ka!

kaJn8~ka!
2

Gn~ka!

kaGn8~ka!G , ~B14!

whereGn(ka) is given by

Gn~ka!5Yn~ka!Jn8~kb!2Yn8~kb!Jn~ka!. ~B15!

For the first term in Eq.~B14! one can use the relation given in@11#:

2G~n!~ka/2!12nJn8~ka!5)
s51

` S 12
~ka!2

~pns8 !2D . ~B16!

The final expression for the first term in Eq.~B14! is the following:

Jn~ka!

kaJn8~ka!
52

2

~ka!2 dn
012(

s
S ~pns8 !2

~pns8 !22n2D 1

q2a22~bns8 !2 , ~B17!

where

~bns8 !25k2a22~pns8 !2, Jn8~pns8 !50. ~B18!

For the second term in Eq.~B14!, singularity atka5sns8 , with Gn8(sns8 )50, gives us

Gn~ka!

kaGn8~ka!
52(

s51

`
bns

~ka!22~sns8 !2 , ~B19!

wherebns is given by the following expression:

bns5@Jn8~sns8 b/a!#2/$@Jn8~sns8 b/a!#2@n2/~sns8 !221#2@Jn8~sns8 !#2@n2/~sns8 b/a!221#%, ~B20!

In addition, there is a singularity atka50. For then50 term, it gives

G0~ka!

kaG08~ka!
5

2

~ka!2@~b2/a2!21#
, ~B21!

and fornÞ0 there is no additional singularity. Then we rewrite Eq.~B14! as

Qn~q!52
2

~ka!2 dn
012(

s51

` S ~pns8 !2

~pns8 !22n2D 1

q2a22~bns8 !2 12(
s50

`
bns

~qa!22~cns8 !2 , ~B22!

wherebns8 is given by Eq.~B18!, cns8 is given by

~cns8 !25k2a22~sns8 !2, Gn8~sns8 !50,

sn08 50, ~B23!

andbns is given by Eq.~B20! for sÞ0 „for s50,n50 term it is given byb0051/@(b2/a2)21#). We rewrite Eq.~B22! as
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